

твердомеры портативные динамические ТКМ-359

(модификации ТКМ-359С, ТКМ-359М)

Руководство по эксплуатации

ТКМ359СМ РЭ

(редакция от 02.10.2012)

Машпроект Научно-производственное предприятие г. Санкт-Петербург

1	ОПИСАНИЕ ТВЕРДОМЕРА	4
	1.1 Назначение твердомера	4
	1.2 ПРИНЦИП ДЕЙСТВИЯ ТВЕРДОМЕРА	4
	1.3 ФУНКЦИИ ТВЕРЛОМЕРА	5
	1.4 Технические характеристики	6
	1.4.1 Общие технические характеристики	6
	1 4 2 Латчики тверломера	0
	1 4 3 Лополнительные устройства и приспособления	11
	1 4 4 Требования к контролируемому излелию	11
	1 4 5 Работа с излелиями, отличными по свойствам от углеролистых	
	конструкционных сталей	. 13
	1.4.5.1 Общие свеления	13
	1.4.5.2 Требования к образцам для дополнительной настройки	10
	тверломера.	13
	1.4.5.3 Использование прелустановленных лополнительных шкал	10
	лля различных материалов	14
	1.4.6 Измерения на легких и тонкостенных излелиях	14
	1.4.6.1 Общие свеления	14
	1.4.6.2 Устранение дополнительной погрешности на легких и	
	тонкостенных излелиях	15
	1.4.7 Работа на изделиях с повышенной шероховатостью	16
	1.4.8 Влияние свойств поверхностных слоев изделия	
	1.4.9. Измерение твердости упрочненных поверхностных слоев.	
	1.5 КОМПЛЕКТНОСТЬ ТВЕРДОМЕРА	17
	1.6 УСТРОЙСТВО ТВЕРДОМЕРА	18
	1.6.1 Составные части и органы управления	
	1.6.2 Меню твердомера	
	1.6.3 Механизм ввода настроек	21
	1.6.4 Сообщения и диалоговые запросы	22
	1.6.5 Защита настроек от случайного изменения	22
	1.7 Маркировка и пломбирование твердомера	23
	1.8 Упаковка твердомера	23
~		•••
2	ЭКСПЛУАТАЦИЯ	23
	2.1 Общие сведения	23
	2.2 Схема замера твердости	24
	2.3 ПОДГОТОВКА К РАБОТЕ И ВКЛЮЧЕНИЕ ТВЕРДОМЕРА	24
	2.4 ПРОВЕРКА РАБОТОСПОСОБНОСТИ ТВЕРДОМЕРА	25
	2.5 Порядок измерения твердости на изделиях	26
	2.6 Управление и представление результатов при измерениях	27
	2.7 УСТАНОВКА ПАРАМЕТРОВ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ ПРИ ИЗМЕРЕНИЯХ.	29
	2.7.1 Установка параметров усреднения	29
	2.7.2 Вывод дополнительной статистики	30
	2.8 Установка границ контроля	30

2.9 Калибровка шкал твердомера	31
2.9.1 Общие сведения	31
2.9.2 Калибровка шкалы	32
2.9.3 Ввод дополнительной калибровки	33
2.9.4 Удаление калибровки	33
2.9.5 Ввод названия дополнительной калибровки	33
2.10 Ввод дополнительной шкалы	34
2.10.1 Общие сведения	34
2.10.2 Ввод параметров дополнительной шкалы	35
2.10.3 Ввод кривой	35
2.10.4 Ввод названия дополнительнои шкалы	33
2.10.5 СНЯТИЕ СИГНАЛА ДАТЧИКА	33
2.11 НАСТРОИКИ ЭЛЕКТРОННОГО БЛОКА ТВЕРДОМЕРА	
2.11.1 Настроика автовыключения и режима подсветки	30
2.11.2 Установка яркости и цвета дисплея	30
2.11.3 DBIOOP ЯЗЫКА	30
2.12.1 Общие сведения	
2.12.2. Ооздание олока	38
2.12.4 Очистка блока	39
2.12.5 Удаление блока	
2.12.6 Очистка памяти	39
2.12.7 Информация о состоянии памяти	39
2.12.8 Изменение названия блока	40
2.12.9 Просмотр данных	40
2.12.10 Анализ данных	40
2.12.11 Вывод графиков	41
2.12.12 Передача данных в компьютер	41
2.13 Контроль состояния и зарядка аккумуляторов	42
2.14 Выключение твердомера	42
3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	42
4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	43
5 МЕРЫ ПРЕДОСТОРОЖНОСТИ	43
6 УТИЛИЗАЦИЯ	44
7 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	44
СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	45
9 СВЕДЕНИЯ О РЕМОНТЕ ТВЕРДОМЕРА	46
МЕТОДИКА ПОВЕРКИ	47
СВИДЕТЕЛЬСТВО ОБ УТВЕРЖДЕНИИ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ	52

Настоящее руководство по эксплуатации (РЭ), совмещенное с паспортом, содержит сведения о назначении, функциях, технических характеристиках, принципе действия, устройстве и работе твердомеров динамических ТКМ-359 (модификации ТКМ-359С, ТКМ-359М, далее твердомер) и правилах их эксплуатации, транспортирования и хранения.

1 ОПИСАНИЕ ТВЕРДОМЕРА

1.1 Назначение твердомера

1.1.1 Твердомер предназначен для оперативного измерения твердости углеродистых конструкционных сталей в шкалах твердости (основных шкалах) - Бринелля (HB), Роквелла (HRC), Виккерса (HV) динамическим методом (методом отскока).

1.1.2 Твердомер предназначен для контроля (справочно) твердости углеродистых конструкционных сталей по шкалам Роквелла (HRA), Роквелла (HRB), Шора (HSD) - путем автоматического перевода из результатов измерений в основных шкалах твердости в соответствующие единицы твердости – по таблицам потребителя или предприятия изготовителя.

1.1.3 Твердомер предназначен для контроля (справочно) твердости по шкале Лейба D (HLD)

1.1.4 Твердомер предназначен для контроля (справочно) временного сопротивления на разрыв (МПа) конструкционных углеродистых сталей перлитного класса - путем автоматического перевода из результатов измерений в шкале Бринелля (НВ) в соответствующие единицы – по таблице определенной ГОСТ 22761-77.

1.1.5 Твердомер предназначен для контроля твердости металлов и сплавов, отличающихся по свойствам от углеродистых конструкционных сталей.

Твердомер может применяться для контроля твердости:

- высоколегированных, жаропрочных, коррозионно-стойких, нержавеющих и др. сталей
- цветных металлов и сплавов
- чугунов
- упрочняющих и др. слоев на стальных изделиях (закалка ТВЧ, цементация, азотирование и др.)
- изделий из мелкозернистых материалов

В случае, когда свойства контролируемого материала отличаются от углеродистых конструкционных сталей, измерения осуществляются после программирования дополнительной калибровки (или дополнительной шкалы) по образцам твердости из соответствующего материала пользователем прибора или на предприятииизготовителе, по заказу пользователя.

Модификация ТКМ-359С выпускается с предустановленными производителем дополнительными шкалами для контроля ряда материалов со свойствами, отличными от углеродистых конструкционных сталей.

1.1.6 Твердомер предназначен для применения в лабораторных, цеховых и полевых условиях.

1.2 Принцип действия твердомера

В основу принципа действия твердомера заложен динамический способ контроля твердости. Метод заключается в определении скорости отскока твердосплавного индентора от поверхности контролируемого изделия.

ТКМ-359СМ РЭ

Составляющими твердомера являются датчик и электронный блок преобразования сигналов с датчика и обработки результатов измерений.

Основными частями датчика являются индентор и электромагнитная катушка. При отскоке индентора от испытуемого изделия в катушке наводится ЭДС, пропорциональная скорости отскока от поверхности изделия. Скорость отскока определяется твердостью изделия.

Поскольку скорость отскока индентора является показателем твердости, то существует зависимость между скоростью отскока V и твердостью материала H:

H = f(V)

Электронный блок твердомера осуществляет прием сигнала с датчика прибора, преобразование его в единицы твердости, вывод результатов измерений на дисплей, статистическую обработку и другие функции данного твердомера.

1.3 Функции твердомера

1.3.1 Контроль проводится:

- по основным шкалам: Роквелла (HRC), Бринелля (HB) и Виккерса (HV) для измерения твердости углеродистых конструкционных сталей;

- по справочным шкалам: Роквелла (HRA), Роквелла (HRB), Шора (HSD), для контроля твердости углеродистых конструкционных сталей;

- по справочной шкале временного сопротивления (МПа), для конструкционных углеродистых сталей перлитного класса;

- по справочной шкале твердости Лейба D (HLD);

- по дополнительным шкалам (только в модификации TKM-359C), предустановленным в твердомере производителем для контроля твердости:

- 1. серых чугунов (с пластинчатым графитом) в единицах Бринелля (НВ),
- 2. ковких (с компактным графитом) и высокопрочных (с шаровидным графитом) чугунов в единицах Бринелля (НВ),
- 3. легированных, инструментальных сталей в единицах Виккерса (HV), Роквелла (HRC),
- 4. алюминиевых сплавов в единицах Бринелля (НВ),
- 5. латуни (медно-цинковые сплавы) в единицах Бринелля (HB), Роквелла (HRB),
- бронзы (медно-оловянные, медно-алюминиевые) в единицах Бринелля (НВ);

- с использованием дополнительных калибровок к шкалам твердомера - для случаев, когда физико-механические свойства контролируемого материала отличаются от углеродистых конструкционных сталей (высоколегированные стали, специализированные чугуны, цветные металлы и сплавы и т. д.).

 по дополнительным шкалам – вводимых (программируемых) пользователем прибора или на предприятии-изготовителе по заказу пользователя, позволяющим потребителю производить контроль требуемых ему характеристик испытуемых изделий при наличии взаимосвязи между первичным сигналом датчика твердомера и требуемой характеристикой.

1.3.2 Калибровка основных шкал при появлении дополнительной погрешности после длительной эксплуатции

1.3.3 Твердомер (только модификация ТКМ-359С) оснащается ярким цветным дисплеем и ударопрочным корпусом для защиты от пыли и влаги.

1.3.4 Твердомер в ходе измерений позволяет вычислять среднее значение серии результатов измерений, в т. ч. с предварительным отбросом результатов некорректно совершенных замеров по алгоритму выбираемомому пользователем.

1.3.5 Твердомер (только модификация ТКМ-359С) в ходе измерений позволяет выполнять дополнительную статистическую обработку серии результатов измерений – поиск минимального, максимального значений, вычисление среднего значения, вычисление среднеквадратичного отклонения от среднего значения.

1.3.6 Твердомер в ходе измерений позволяет выводить на дисплей дополнительную информацию – предыдущие результаты измерений.

1.3.7 Твердомер позволяет организовывать архив данных в виде именных блоков результатов измерений, сохранять его при выключенном питании и передавать данные на компьютер.

1.3.8 Твердомер (только модификация ТКМ-359С) позволяет проводить различные виды анализа сохраненных результатов измерений, производить построение различных видов графиков непосредственно на дисплее прибора.

1.3.9 Твердомер позволяет выбирать информацию, дополнительно выводимую на дисплей прибора в процессе измерений.

1.3.10 Твердомер (только модификация ТКМ-359С) позволяет устанавливать границы контроля и сигнализировать о выходе результата измерения за эти границы.

1.3.11 Твердомер в процессе работы постоянно контролирует состояние заряда аккумулятора и сигнализирует о его разряде.

1.3.12 Твердомер позволяет устанавливать время автоматического выключения прибора при паузах в его эксплуатации, для дополнительной экономии заряда аккумулятора.

1.3.13 Твердомер позволяет настраивать режим подсветки дисплея для дополнительной экономии заряда аккумулятора.

1.3.14 Твердомер (только модификация ТКМ-359С) позволяет устанавливать цветовую палитру и яркость дисплея.

1.3.15 Твердомер позволяет выбирать язык интерфейса из заложенных при изготовлении по заказу пользователя.

1.4 Технические характеристики

1.4.1 Общие технические характеристики

Основные технические характеристики твердомера приведены в таблице 1.

Таблица 1

Диапазон измерений твердости по основным шкалам:			
по Бринеллю	90 - 450 HB		
по Роквеллу С	20 - 70 HRC		
по Виккерсу	240 - 940 HV		
Пределы абсолютной погрешности при измерении твердости по основным шка-			
лам на мерах твердости 2-го разряда			
по Бринеллю			
в диапазоне (90150)НВ	±10 HB		
В диапазоне (150300)НВ ±15 НВ			
В диапазоне (300450)НВ	±20 HB		
по Роквеллу С	±2 HRC		

ТКМ-359СМ РЭ

по Виккерсу				
В лиапазоне (240 500) HV	+15 HV			
В диалазоне (500 800)HV	+20 HV			
В диапазоне (800940)HV	+25 HV			
по временному сопротивлению у	3501500 Мпа			
по Роквеллу А	70 5 - 85 5 HBA			
по Роквеллу В	51 - 100 HBB			
	35 - 102 HSD			
по Лейбу D	150 – 900 HLD			
Лиапазоны контроля тверлости по прелу				
пам для различных материалов (только	молификация ТКМ-359С)			
Серые чугуны				
(с пластинчатым графитом)	90 – 335 HB			
ковкие чугуны				
(с компактным графитом)				
	130 – 390 HB			
(с шаровидным графитом)				
легированные, инструментальные ста-	80 – 900 HV			
ли	20 – 70 HRC			
Алюминиевые сплавы	30 – 160 HB			
	40 – 175 HB			
Латуни (медно-цинковые сплавы)	14 – 95 HRB			
Бронзы (медно-оловянные, медно-				
алюминиевые)	60 – 290 HB			
Габаритные размеры электронного блока твердомера не более:				
Модификация ТКМ-359С	121 х 69 х 41 мм			
Модификация ТКМ-359М	155 х 81 х 31 мм			
Масса электронного блока твердомера:				
не более	0,3 кг			
Масса датчиков				
не более	0,3 кг			
Рабочие условия эксплуатации твердом	epa			
Температура воздуха	от минус 15 до плюс 35 °C			
Относительная влажность	30 – 80 %			
Атмосферное давление	84 – 106.7 кПа			
Межповерочный интервал	1 год			
Срок службы твердомера	5 лет			
Количество возможных дополнительных калибровок к шкалам твердомера				
Модификация ТКМ-359С	5 для каждой шкалы			
Модификация ТКМ-359М	5 для каждой шкалы			
Количество дополнительных шкал твердомера				
Молификация ТКМ-359С 3				
Модификация ТКМ-359М	3			
Время одного замера тверлости				
(среднее)	2 c.			
Число замеров для вычисления среднего значения				

Модификация ТКМ-359С	1 – 99			
Модификация ТКМ-359М	1 – 20			
Количество алгоритмов отброса ре-				
зультатов некорректно совершенных	2			
замеров при вычислении среднего	3			
значения				
Параметры дополнительной статисти-	максимум, минимум, среднеквадра-			
ческой обработки серии измерений	тичное отклонение от среднего, сред-			
(только модификация ТКМ-359С)	нее значение.			
Дополнительная информация, выводима	ая на дисплей (определяется пользова-			
телем)				
	предыдущие результаты измерений			
	серии,			
Модификация ТКМ-5590	результаты дополнительной статисти-			
	ческой обработки			
MORINGHAROUNG TKM 250M	предыдущие результаты измерений			
модификация т км-зээм	серии			
Количество образцов для создания				
дополнительных калибровок к шкалам	1 или 2			
твердомера				
Количество образцов для программи-	от 2 до 10 шт. (определяется пользо-			
рования дополнительных шкал	вателем)			
Промежуточная интерполяция	Кусочно-линейная или кусочно-			
	параболическая (определяется поль-			
	зователем)			
	Цветовая. Границы контроля задаются			
Сигнализация о выходе результата	пользователем по каждой шкале от-			
измерения за допустимые границы	дельно.			
(только модификация ТКМ-359С)	Виды границ: больше, меньше, выход			
	за диапазон			
Максимальное количество результатов	измерений, сохраняемых в памяти			
Модификация ТКМ-359С	12 400			
Модификация ТКМ-359М	6 000			
Максимальное количество именных бло	ков результатов измерений, создавае-			
мых в памяти				
Модификация ТКМ-359С	100			
Модификация ТКМ-359М	30			
Вывод на дисплей, статистическая обра	ботка и построение графиков блоков			
результатов измерений.				
	- все результаты в блоке,			
	- результаты в блоке больше/меньше			
	значения, задаваемого пользователем			
Вывод на дисплей	(только модификация ТКМ-359С),			
	- результаты выходящие за диапазон,			
	задаваемый пользователем (только			
	модификация ТКМ-359С).			
Статистическая обработка (только	- максимум, минимум, среднее значе-			
модификация ТКМ-359С)	ние, среднеквадратичное отклонение			
······································	от среднего.			

	 среднее отклонение от значения, за- даваемого пользователем, количество результатов больше/меньше значения, максимальное отклонение в боль- шую/меньшую сторону от значения, количество результатов, выходящих за диапазон, задаваемый пользовате- лем (за верхнюю/нижнюю границу), 	
	ней/нижней границы.	
Построение графиков (только моди- фикация ТКМ-359С)	 относительно среднего значения относительно значения задаваемого пользователем. относительно диапазона задаваемо- го пользователем. 	
Связь с компьютером через интерфейс		
Модификация ТКМ-359С	USB	
Модификация ТКМ-359М	RS-232C	
Автоматическое выключение твердо- мера	Время выключения задается пользо- вателем	
Контроль состояния заряда аккумуля-	Постоянно. Постоянная индикация в режиме измерений.	
Подсветка дисплея	Время задается пользователем	
Цветовая палитра и яркость дисплея (только модификация ТКМ-359С)	Выбирается пользователем	
Язык интерфейса твердомера	Русский. (английский, немецкий, французский - опционально)	
Питание твердомера	Автономное, аккумуляторное. Воз- можно использование не перезаря- жаемых эквивалентных батареек	

1.4.2 Датчики твердомера

Составляющими частями твердомера являются датчик и электронный блок обработки сигналов с датчика. По заказу потребителя комплект поставки твердомера могут входить дополнительные датчики (см. Рис. А).

Датчики служат для формирования сигнала, несущего информацию о твердости контролируемого изделия.

Основными функциональными частями датчика являются пружина, индентор и электромагнитная катушка. Пружина разгоняет индентор. Индентор ударяется о поверхность контролируемого изделия и отскакивает в обратную сторону. При отскоке индентора в катушке наводится ЭДС, пропорциональная скорости отскока от поверхности изделия. Скорость отскока определяется твердостью изделия.

Для обеспечения оптимальных условий измерений на изделиях в составе твердомеров могут использоваться дополнительные датчики с различными габаритами и различной жесткостью пружины, обеспечивающей различную энергию удара индентора о контролируемое изделие.

Опорная шайба может сниматься (отвинчиваться) с датчика для уменьшения площади необходимой для его размещения на поверхности изделия, при измерении. Вместо опорной шайбы может устанавливаться насадка типа Z-359 (см. п. **1.4.3** "Дополнительные устройства и приспособления").

Датчики изготавливаются с встроенным соединительным кабелем для подключения к электронному блоку или с встроенным разъемом под соединительный кабель по заказу пользователя.

Перечень типовых датчиков приведен в таблице 2

Таблица 2

		Габаритные размеры, не более			
обо-	бо- аче- Описание иие	Длина, мм		Диаметр, мм	
значе- ние		с ка- белем	с разъ- емом	с ка- белем	с разъ- емом
D	Датчик, штатно поставляемый в комплекте твердомера. Использу- ется для основного числа задач измерений	138	138	21	25
G	Датчик увеличенных габаритных размеров и энергией удара (отно- сительно датчика "D"). Для кон- троля материалов с высокой структурной неоднородностью при высокой шероховатости поверх- ности. Допускается использова- ние только на твердости менее 450 HB		-	29	-
E	Датчик с уменьшенной (относи- тельно датчика "D") энергией уда- ра и алмазным индентором. Для контроля материалов повышен- ной твердости.	138	138	21	25

Средние условные диаметры отпечатков (мм), создаваемых на поверхности изделия при измерении различной твердости (для углеродистых конструкционных сталей), приведены в таблице 3.

Таблица 3

Обозначение	103 HB	209 HB	406 HB	763 HV
типа датчика	(103 HV)	(212 HV)	(420 HV)	(63,0 HRC)
			(42,5 HRC)	
D	0,80	0,72	0,67	0,57
G	1,29	1,22	0,93	-
E	-	-	-	0,17

Средние условные глубины отпечатков (мм), создаваемых на поверхности изделия при измерении различной твердости (для углеродистых конструкционных сталей), приведены в таблице 4.

Таблица 4

Обозначение типа датчика	103 HB (103 HV)	209 HB (212 HV)	406 HB (420 HV) (42,5 HRC)	763 HV (63,0 HRC)
D	0,054	0,043	0,038	0,027
G	0,084	0,075	0,044	-
E	-	-	-	0,050

По заказу пользователя могут изготавливаться и применяться в твердомере специализированные датчики с характеристиками, отличными от приведенных выше.

1.4.3 Дополнительные устройства и приспособления

1.4.3.1 Датчики твердомера, по заказу пользователя могут оснащаться дополнительной насадкой Z-359 для обеспечения позиционирования датчиков "D" и "E", со встроенными соединительными кабелями, на цилиндрических поверхностях и специализированными насадками – по заказу потребителя.

Дополнительная насадка Z-359 состоит из двух основных частей:

- шайбы с профильной поверхностью для обеспечения устойчивого позиционирования датчика на цилиндрических поверхностях;

- пружинного устройства для прижатия датчика к контролируемой поверхности;

Насадка Z-359, в случае необходимости ее использования, устанавливается на датчик твердомера вместо опорной шайбы. Насадка Z-359 может использоваться только с датчиками со встроенным соединительным кабелем.

1.4.3.2 По техническому заданию пользователя могут изготавливаться и применяться в твердомере специализированные устройства и приспособления для обеспечения контроля в нестандартных условиях.

1.4.3.3 Твердомер, по заказу пользователя может дополнительно комплектоваться аккумуляторной шлифовальной машинкой – для подготовки поверхности в зоне измерений (уменьшение шероховатости, удаление окалины, ржавчины, наклепа и обработки сварных швов).

1.4.3.4 Твердомер, по заказу пользователя, может дополнительно комплектоваться образцовыми мерами твердости по **ГОСТ 9031-75** – для периодической проверки его работоспособности.

1.4.3.5 Твердомер, по заказу пользователя, может дополнительно комплектоваться запасными аккумуляторами.

1.4.4 Требования к контролируемому изделию

1.4.4.1 Минимальная рекомендуемая масса контролируемого изделия – в соответствии с таблицей 5

таблица 5

Обозначение типа датчика	Минимальная масса, кг
D	3
G	6
E	2

Если масса контролируемого изделия меньше указанной – при измерениях необходимо дополнительно руководствоваться п. 1.4.6 "Измерения на легких и тонкостенных изделиях".

1.4.4.2 Минимальная рекомендуемая толщина контролируемого участка изделия – в соответствии с таблицей 6

таблица 6

Таблица 7

Обозначение типа датчика	Минимальная толщина, мм
D	6
G	55
E	5

Если толщина контролируемого изделия меньше указанной – при измерениях необходимо дополнительно руководствоваться п. 1.4.6 "Измерения на легких и тонкостенных изделиях".

1.4.4.3 Максимальная рекомендуемая шероховатость поверхности изделия (участка поверхности), на которой производятся измерения - в соответствии с таблицей 7.

Обозначение типа датчика	Шероховатость поверхности, не более
D	Ra 3,2
G	Ra 7,2
ш	Ra 1,6

Если шероховатость поверхности изделия выше указанной, при измерениях необходимо дополнительно руководствоваться п. **1.4.7** "Работа на изделиях с повышенной шероховатостью".

1.4.4.4 Минимальный радиус кривизны выпуклой контролируемой поверхности - 18 мм. (для датчиков D, E).

Для обеспечения позиционирования датчика на выпуклых контролируемых поверхностях рекомендуется использовать дополнительную насадку типа Z-359.

1.4.4.5 Минимальный радиус кривизны вогнутой контролируемой поверхности - 200 мм. (со снятой опорной шайбой, для датчиков D, E).

Для обеспечения позиционирования датчика на вогнутых контролируемых поверхностях возможно использование специализированных насадок изготавливаемых по заказу пользователя.

1.4.4.6 Минимальный диаметр площадки для замера твердости на поверхности контролируемого изделия (для установки датчика).

Датчики D, E – 21 мм. (со снятой опорной шайбой - 6 мм.)

Датчики G – 29 мм. (со снятой опорной шайбой - 7 мм.)

1.4.4.7 Поверхность контролируемого изделия должна быть сухой, очищенной от окалины, ржавчины, пыли, грязи и обезжиренной.

1.4.4.8 В случае отличия свойств материала контролируемого изделия от углеродистых конструкционных сталей (жаропрочные, коррозионно-стойкие, нержавеющие и др. стали, цветные металлы и сплавы и т.д.), при измерениях необходимо дополнительно руководствоваться требованиями п. **1.4.5** "Работа с изделиями отличными по свойствам от углеродистых конструкционных сталей".

1.4.5 Работа с изделиями, отличными по свойствам от углеродистых конструкционных сталей

1.4.5.1 Общие сведения

В основе принципа действия твердомера динамический (ударный) способ контроля твердости. В отличии от твердомеров статического принципа действия (стационарных твердомеров), на результаты измерений влияют не только свойства металла при пластической деформации, но и другие физико-механические свойства. В основном - модуль упругости контролируемого металла (модуль Юнга). Возникающая дополнительная погрешность влечет за собой необходимость проводить настройку прибора (дополнительную калибровку или программирование дополнительной шкалы) для работы с материалами, имеющими модуль упругости, отличный от модуля упругости углеродистых конструкционных сталей.

Для определения наличия дополнительной погрешности необходимо сравнить результаты измерений твердомером с результатами измерений прибором статического принципа действия.

Если расхождение результатов не превышает максимальной погрешности твердомера, то это означает, что на данных материалах, можно проводить измерения без проведения дополнительной калибровки.

Если расхождение результатов превышает максимальную погрешность твердомера, то необходимо провести дополнительную настройку твердомера (дополнительную калибровку) по одному или двум образцам твердости из контролируемого материала (процедура изложена в п. **2.9** "Калибровка шкал твердомера").

В процессе эксплуатации твердомера могут возникнуть задачи контроля твердости (или других свойств) материалов со специфическими физико-механическими свойствами. В этом случае существует вероятность, что дополнительная калибровка не позволит в полной мере устранить возникающую погрешность. В данном случае необходимо провести дополнительную настройку твердомера (ввести в твердомер дополнительную шкалу) по двум и более образцам твердости из контролируемого материала (процедура изложена в п. **2.10** "**Ввод дополнительной шкалы**").

Образцы твердости для проведения дополнительных калибровок и ввода дополнительных шкал необходимо изготавливать с учетом требований **п. 1.4.5.2 "Требования к образцам для дополнительной настройки твердомера"**.

В случаях, когда материал изделия с обладает высокой структурной неоднородностью, крупнозернистой структурой, метод, реализуемый в твердомере, может не позволить обеспечить контроль этих изделий. Мероприятия по дополнительной калибровке и вводу дополнительной шкалы не дадут желаемого результата. Будет велик разброс показаний прибора. Также, данные мероприятия могут не дать результата для контроля изделий сверхвысокой или сверхнизкой твердости.

1.4.5.2 Требования к образцам для дополнительной настройки твердомера.

1.4.5.2.1 Количество образцов, необходимых для проведения дополнительной калибровки, 1 или 2 шт. Рекомендуемое отношение максимального значения твердости образца Hmax к минимальному значению твердости образца Hmin – 2.

1.4.5.2.2 Количество образцов для ввода в твердомер дополнительной шкалы - 2 и более.

1.4.5.2.3 При изготовлении образцов рекомендуется следовать требованиям **ГОСТ 9031-75**, предъявляемым к образцовым мерам твердости 2-го разряда, относительно шероховатости и геометрии с дополнительным ограничением – толщина (высота) образца не менее 10 мм.

В случае отклонения от данных требований (не рекомендуется), необходимо обеспечить:

- шероховатость рабочей поверхности образца – не хуже определяемой в таблице 7, п. **1.4.4 "Требования к контролируемому изделию"**.

- опорная поверхность образца должна быть плоскошлифованной.

1.4.5.2.4 При изготовлении образцов необходимо следовать требованиям **ГОСТ** 9031-75, предъявляемым к образцовым мерам твердости 2-го разряда, относительно размаха твердости по поверхности.

1.4.5.2.5 После изготовления перед применением образцы должны пройти метрологическую аттестацию (калибровку) по твердости в установленном порядке. Максимально допустимый промежуток времени между аттестацией образцов и их применением – 1 год, при условии соблюдения требований **ГОСТ 9031-75** к упаковке, транспортировке и хранению образцовых мер твердости.

1.4.5.2.6 При работе с образцами необходимо дополнительно руководствоваться п. **1.4.6** "Измерения на легких и тонкостенных изделиях."

1.4.5.3 Использование предустановленных дополнительных шкал для различных материалов.

Дополнительные шкалы для контроля некоторых материалов, отличных по свойствам от углеродистых конструкционных сталей (см. перечень в п.п. **1.3** "Функции твердомера", **1.4.1** "Общие технические характеристики") устанавливаются только в модификации ТКМ-359С на этапе производства твердомера.

В ряде случаев использование этих шкал может позволить обойтись без программирования дополнительной калибровки или шкалы твердомера.

Характеристики, записанные в данные дополнительные шкалы, являются "обобщением" для соответствующих им групп материалов. Поэтому, при контроле конкретного материала из соответствующей группы возможно появление некоторой дополнительной погрешности (значительно меньшей, чем при использовании основных шкал).

Перед началом использования данных шкал рекомендуется оценить наличие и величину такой погрешности, сравнив результаты измерений, полученных с их помощью, с результатами измерений прибором статического принципа действия.

В случае необходимости допускается устранить данную погрешность, используя механизм калибровки (или дополнительной калибровки) для данной шкалы (процедура изложена в п. **2.9** "Калибровка шкал твердомера").

1.4.6 Измерения на легких и тонкостенных изделиях

1.4.6.1 Общие сведения

В случае, когда контролируемое изделие, образец или мера твердости не удовлетворяют требованиям п. **1.4.4** "**Требования к контролируемому изделию**", относительно массы и/или толщины изделия, твердомер будет производить измерения с дополнительной погрешностью. Погрешность будет тем больше, чем больше отклонение от указанных требований. В случае недостаточной толщины изделия погрешность возникает из-за "прогиба" изделия в месте удара индентора.

В случае недостаточной массы погрешность возникает из-за "смещения" самого изделия от удара индентора.

Для определения наличия дополнительной погрешности необходимо сравнить результаты измерений твердомером с результатами измерений прибором статического принципа действия.

1.4.6.2 Устранение дополнительной погрешности на легких и тонкостенных изделиях

1.4.6.2.1 В случае недостаточной толщины изделия для устранения дополнительной погрешности необходимо притереть изделие к массивной опорной плоскошлифованной плите. Рекомендуемые параметры плиты:

- Масса и толщина - заведомо большие минимальной массы и толщины контролируемого изделия, указанной в п. **1.4.4** "Требования к контролируемому изделию".

- Шероховатость – минимальная. Оптимальная - не более Ra 0,4 мкм.

- Неплоскостность не более 0,005мм.

- Модуль упругости металла плиты (модуль Юнга) близкий к модулю упругости контролируемого изделия.

Нижняя часть изделия должна быть плоскошлифованной. Оптимальная шероховатость - не более Ra 0,4 мкм., неплоскостность не более 0,005мм.

Перед установкой изделия на опорную поверхность плиты необходимо нанести тонкий слой смазки ЦИАТИМ-221 по ГОСТ 9433-80. Изделие "притереть" к поверхности плиты через слой смазки таким образом, чтобы между поверхностями изделия и плиты отсутствовали, даже небольшие, пятна воздушных прослоек. Притирать изделие необходимо плотно - чтобы изделие и плита образовали единую монолитную массу.

1.4.6.2.2 В случае недостаточной массы для устранения дополнительной погрешности необходимо изделие зажать в массивные металлические тиски.

Масса тисков должна быть заведомо больше минимальной массы контролируемого изделия, указанной в п. **1.4.4 "Требования к контролируемому изделию**".

Также в случае недостаточной массы для устранения дополнительной погрешности допустимо провести "притирку" изделия на массивную плиту способом описанным выше (п. **1.4.5.2.1**).

1.4.6.2.3 Способ "притирания" следует использовать для тонких изделий (в виде листов), изделий, имеющих плоскую форму, и массу, сравнимую с минимальной массой контролируемого изделия, указанной в п. **1.4.4** "**Требования к контроли**руемому изделию". Пример – образцовые меры твердости по шкале Роквелла по **ГОСТ 9031-75.**

Зажимать в тиски следует мелкие изделия незначительной массы, имеющие "объемную" форму.

1.4.6.2.4 В случаях когда изделия обладают маленькой массой и/или толщиной, проведение указанных мероприятия может не дать желаемых результатов. Для контроля таких изделий необходимо применять твердомеры статического принципа действия с создаваемой малой и сверхмалой нагрузкой.

1.4.6.2.5 Достоверность контроля необходимо оценить, сравнив показания твердомера с результатами измерения приборами статического принципа действия.

1.4.7 Работа на изделиях с повышенной шероховатостью

При измерениях на изделии, обладающем высокой шероховатостью поверхности (выше указанной в п. **1.4.4 "Требования к контролируемому изделию**"), может наблюдаться высокий дополнительный разброс в показаниях прибора.

Устранить дополнительный разброс можно двумя способами:

- Зачистить участок поверхности (например, с помощью шлифовальной машинки по п. 1.4.3 "Дополнительные устройства и приспособления") до получения необходимой шероховатости на площади, определенной п. 1.4.4 "Требования к контролируемому изделию".
- При измерениях использовать более высокое число усреднений. Рекомендуется, только если по каким либо причинам невозможно зачистить участок поверхности. В ряде случаев данный способ может привести к занижению показаний твердомера, например – наличие регулярных неровностей на поверхности изделия (грубая токарная обработка поверхности изделия).

При измерениях на изделии с высокой шероховатостью поверхности рекомендуется использовать алгоритмы отброса результатов некорректно совершенных замеров. (см. п. **2.7.1 "Установка параметров усреднения"**).

1.4.8 Влияние свойств поверхностных слоев изделия

В отличие от приборов статического принципа действия при проведении измерений индентор датчика твердомера создает отпечатки небольшой глубины (см. п. **1.4.2 "Датчики твердомера", таблица 4**). Следовательно, происходит измерение твердости непосредственно поверхностного слоя изделия.

На контролируемом изделии в процессе его изготовления могут возникать тонкие поверхностные слои, отличающиеся по твердости от основной массы металла. Например:

- Обезуглероженный слой с пониженной твердостью, образуется в результате высокотемпературной термической обработки (закалка, нормализация, горячий прокат, ковка и т.д).

- Наклеп - может образовываться в поверхностном слое после токарной и фрезерной обработки, а также грубой шлифовки.

- Нагартовка.

Наличие таких слоев (наличие, в ряде случаев, можно определить с помощью твердомера) оказывает на показания твердомера существенно большее влияние, чем на показания приборов статического принципа действия.

Толщина подобных слоев обычно не превышает 0,2 мм. Для обеспечения точности измерений, в случае наличия, их необходимо удалить из зоны измерения – например с помощью шлифовальной машинки.

1.4.9. Измерение твердости упрочненных поверхностных слоев.

В зависимости от типа применяемого датчика и от твердости изделия индентор создает отпечатки различной глубины (см. п. **1.4.2** "Датчики твердомера", таблица **4**). Пластическая деформация металла образуется на существенно больших глубинах.

Как правило, твердость поверхностных упрочненных слоев резко отличается от твердости основного металла изделия (например – закалка ТВЧ). Измерять твердость в подобных случаях рекомендуется, когда толщина слоя составляет **не менее 1,5 мм**. Уточнить значение данного параметра и оценить возможность измерения твердости слоя на конкретном типе изделия можно путем сравнения показаний твердомера с показаниями прибора статического принципа действия.

Для контроля более тонких слоев рекомендуется использовать портативные ультразвуковые (контактно-импедансные) твердомеры, например TKM-459M, TKM-459C.

Для измерения твердости упрочненных поверхностных слоев рекомендуется применять только датчики типов D и E, либо специализированные датчики, изготовленные по отдельному заказу.

При измерении твердости необходимо дополнительно учитывать п. 1.4.5 "Работа с изделиями, отличными по свойствам от углеродистых конструкционных сталей".

Таблица 8

1.5 Комплектность твердомера

Комплектность поставки твердомера соответствует таблице 8.

Позиция	Кол. (шт)	Примечание
Базовая комплек	тация	
Электронный блок	1	Модификация: ТКМ-359
Датчик D и кабель	1	 встроенный кабель разъем
Аккумулятор	1	NiMH (комплект, установ- лен в электронном блоке)
Зарядное устройство	1	
Кабель для подключения к компьютеру	1	RS233 – для ТКМ-359М USB – для ТКМ-359С
Диск с программным обеспечением	1	
Руководство по эксплуатации	1	включает паспорт
Футляр для переноски и хранения	1	
Дополнительная ком	плекта	ция
Датчик D		с кабелем шт.
Датчик G		с кабелем шт. с разъемом шт.
Датчик Е		с кабелемшт.
Соелинительный кабель		с развемом шт.
Насалка Z-359		
Шлифовальная машинка		
Меры твердости Бринелль		
Меры твердости Роквелл		
Меры твердости Виккерс		
Запасные аккумуляторы		

Состав и наличие дополнительной комплектации определяется при заказе твердомера.

1.6 Устройство твердомера

1.6.1 Составные части и органы управления

Функционально твердомер состоит из электронного блока и датчика (см. п. **1.4.2** "Датчики твердомера").

Электронный блок твердомера осуществляет прием сигнала с электромагнитной катушки датчика, преобразование его в единицы твердости, вывод результатов измерений на дисплей, статистическую обработку и другие функции данного твердомера

На лицевой панели электронного блока расположен графический дисплей (монохромный, жидкокристаллический в модификации ТКМ-359М, цветной в модификации ТКМ-359С) и клавиатура. схематичное изображение злектронного блока показано на рисунке 1.

На торцевой стенке твердомера расположен разъем для подключения датчика

или кабеля для соединения с компьютером. В модификация ТКМ-359С дополнительно присутствует разъем для подключения зарядного устройства аккумуляторов.

На задней панели твердомера расположена крышка аккумуляторного отсека и табличка, содержащая заводской номер твердомера.

Управление работой твердомера - переключение шкал, установок, создание дополнительных калибровок и шкал, запись результатов в память, анализ результатов и т.д. осуществляется на дисплее посредством клавиатуры прибора.

Для облегчения использования твердомера, в электронном блоке реализован, интерактивный пользовательский интерфейс соответствующий общепринятым стандартам, применяемым в современной вычислительной технике.

Рис. 1

1.6.2 Меню твердомера

Весь перечень настроек (параметров работы и т. д.) твердомера, кроме выбора рабочих шкал (см. **2.6** "Управление и представление результатов при измерениях"), производится через графическое меню прибора. Меню прибора многоуровневое - для удобства доступа, логически связанные настройки объединены в группы и доступ к ним осуществляется через вложенные подменю, соответствующего пункта меню прибора.

Вид меню на дисплее прибора представлен на рисунке 2.

Переключение между пунктами меню производится кнопками "①", "①". Выбор пункта меню (переход к установке необходимых параметров или переход в подменю) производится кнопкой ④, на дисплее соответственно отобразится окно ввода параметра (см. далее) или подменю. Выход из подменю на более высокий уровень – кнопкой "意".

Количество пунктов меню в модификация твердомера ТКМ-359С и ТКМ-359М – неодинаково, т. к. модификация ТКМ-359М обладает сокращенным, относительно ТКМ-359С, набором функций.

Количество пунктов меню, отображаемых в процессе работы, может быть разным – зависит от того, какая (основная, справочная, дополнительная) шкала или дополнительная калибровка выбрана для работы в данный момент.

Общая структура меню приведена в таблице 9.

Таблица 9.

Пункт меню		функция	Радел описания
Измерения		Выход в режим	2.6 "Управление и
		измерений	представление ре-
			зультатов при изме-
	1		рениях
Статистика	Выборка	Установка раз-	2.7.1 "Установка па-
		меров усредне-	раметров усреднения"
		ния и алгоритма	
		отброса резуль-	
		татов некоррект-	
		но совершенных	
		замеров.	
	Информация	Выбор дополни-	2.7.2 "Вывод дополни-
		тельной стати-	тельной статистики"
		стики, выводимой	
		на дисплей	
Пороги (только	в модификация	Установка сигна-	2.8 "Установка границ
TKM-359C)		лизации о выходе	контроля"

		результата за ус-	
		тановленный диа-	
	Г	пазон	
Калибровка	Калибровка	Калибровка ос- новной или спра- вочной шкалы. Ввод дополни- тельной калиб- ровки к шкале.	2.9.2 "Калибровка шкалы" 2.9.3 "Ввод дополни- тельной калибровки"
	Удаление	Удаление калиб- ровки (возврат к исходным на стройкам)	2.9.4 "Удаление ка- либровки"
	Имя		
	(отображается только для до- полнительной калибровки)	Ввод названия дополнительной калибровки	2.9.5 "Ввод названия дополнительной ка- либровки"
Ввод шкалы (отображается только для до- полнительной шкалы)	Настройки	Установка пара- метров дополни- тельной шкалы (количество то- чек, вид интерпо- ляции)	2.10.2 "Ввод парамет- ров дополнительной шкалы"
	Ввод кривой	Запись тариро- вочной кривой	2.10.3 "Ввод кривой"
	Обозначения	Ввод названий дополнительной шкалы и единиц измерения	2.10.4 "Ввод названия дополнительной шка- лы"
	Сигнал датчи- ка	Режим снятия первичного сиг- нала с датчика	2.10.5 "Снятие сигна- ла датчика"
Настройки	Прибор	Установка вре- мени автомати- ческого выклю- чения прибора, режима подсвет- ки	2.11.1 "Настройка ав- товыключения и ре- жима подсветки "
	Экран (только в модификация ТКМ-359С)	Установка ярко- сти и цветовой палитры лисплея	2.11.2 "Установка яр- кости и цвета дис- плея"
	Выбор языка	Установка языка интерфейса при- бора	2.11.3 "Выбор языка"
Память (структура	а подменю под-	Функции работы	2.12 "Работа с памя-
робно рассмотрен	а далее)	с архивом дан- ных	тью"
Выключение		Выключение	2.14 "Выключение

	твердомера	твердомера"
-		

Выход в меню осуществляется нажатием кнопки "[], (см. 2.6 "Управление и представление результатов при измерениях").

1.6.3 Механизм ввода настроек

Настройки и параметры работы твердомера устанавливаются через окно ввода параметров:

- путем выбора одного из нескольких возможных вариантов установки (например, размер усреднения);
- ввода числового или строкового значения (например, название дополнительной шкалы)

Пример окна ввода параметров отражен на рисунке 3.

Рис. 3

Для изменения параметра 1 необходимо "выбрать" его на дисплее с помощью кнопок "⁽⁾". "⁽⁾". Выбранный параметр выделяется на дисплее.

Параметр 1 устанавливается путем выбора одного из нескольких вариантов.

Для его изменения необходимо воспользоваться кнопками " , " .

Параметр 2 устанавливается путем ввода числового значения. Для его измене-

ния необходимо "выбрать" его на дисплее, поле чего нажать кнопку " Дисплей примет вид изображенный на рисунке 4.

	Настроики
Параметр 1 (не выбран)	Параметр 1: - • ЗНАЧЕНИЕ •
Параметр 2 (ввод значения)	Параметр 2:
Изображение кнопки"ОК"	100.5
(не выбрано)	Ок

Рис. 4

Ввод числового значения производится установкой отдельных его разрядов в позиции курсора. Цифра в соответствующем разряде изменяется кнопками "①", "①". Переход к другому разряду осуществляется кнопками "۞", "○". Ввод число-

вого значения заканчивается нажатием кнопки " (курсор исчезает, параметр 2 остается выбранным). Ввод строковых параметров происходит аналогично.

Выход из окна установки параметров в меню производится нажатием кнопки "[]". Выход также возможен при нажатии кнопки "[]", если в данный момент не выбран параметр, устанавливаемый вводом числового или строкового значения. Еще один способ выхода из окна ввода – выбор изображения кнопки "OK" на дисплее и нажатии кнопки "[]".

После выхода из окна установок твердомер выдаст сообщение о сохранении установленных параметров (см. п. **1.6.4** "Сообщения и диалоговые запросы").

1.6.4 Сообщения и диалоговые запросы

В процессе настроек твердомер может выводить информирующие сообщения (рисунок 5).

Рис. 5

Некоторые действия в ходе настроек могут происходить в "диалоговом" режиме. Например, от пользователя потребуется подтвердить изменение какого либо параметра. Твердомер отобразит окно запроса – рисунок 6.

рис. 6

Что бы подтвердить действие, необходимо выбрать изображение кнопки "Да" на дисплее и нажать кнопку "—". Чтобы отказаться - выбрать изображение кнопки "Нет" на дисплее и нажать кнопку "—".

1.6.5 Защита настроек от случайного изменения

Для предохранения от случайного изменения особо важных параметров (например изменения калибровки шкал прибора) предусмотрен режим ввода защитного кода. Перед началом настройки выводится окно ввода изображенной на рисунке 7.

1.7 Маркировка и пломбирование твердомера

1.7.1 На задней панели электронного блока располагается табличка, на которой указывается:

- наименование предприятия-изготовителя;

- модификация твердомера;
- заводской номер твердомера;
- знак утверждения типа средств измерений.

1.7.2 На датчиках может указывается заводской номер твердомера и буква указывающая тип датчика. Для типа датчика D – буква "D" не указывается.

1.7.3 Надписи, знаки и изображения на табличке выполняются способом, обеспечивающим их сохранность при хранении и в процессе эксплуатации твердомера.

1.7.4 Для предотвращения несанкционированного доступа и попыток неквалифицированного ремонта электронный блок твердомера и корпуса датчиков соответствующим образом пломбируются.

1.8 Упаковка твердомера

Для хранения и транспортирования электронный блок твердомера и датчики помещаются в футляр.

2 ЭКСПЛУАТАЦИЯ

2.1 Общие сведения

Как описано выше, твердомер позволяет осуществлять измерения:

- по основным шкалам,
- по справочным шкалам,
- по дополнительным калибровкам к шкалам,
- по дополнительным шкалам.

Измерения твердомером происходят в соответствии с схемой замера твердости, рассмотренной ниже (п. **2.2** "Схема замера твердости")

Работа с твердомером в процессе измерений производится в соответствии с выбранной шкалой и установками, определенными Пользователем через меню (см. **1.6** "Устройство твердомера").

Цикл работы с твердомером должен включать следующие этапы:

- подготовка к работе и включение,
- проверка работоспособности,
- выполнение необходимых настроек (при необходимости),
- измерения твердости на изделиях.

Сущность и процедура каждого этапа рассмотрена ниже.

Периодически необходимо осуществлять техническое обслуживание твердомера (п. **3 "Техническое обслуживание"**).

2.2 Схема замера твердости

Конструкция твердомера устанавливает следующую схему замера твердости:

- Установить датчик нормально (перпендикулярно) к поверхности контролируемого изделия.
- Нажимая на корпус датчика (сжимая пружину в датчике) "взвести" датчик привести его в рабочее состояние.
- Нажать спусковую кнопку на датчике.
- Результаты замера твердости появятся на дисплее твердомера приблизительно через 1 секунду.

ВНИМАНИЕ !!!

- При измерениях, необходимо не допускать попадания индентора в отпечаток, оставленный после предыдущих замеров (необходимо сместить датчик вдоль поверхности). Это может привести к появлению дополнительной погрешности результата измерений.
- Во время нажатия спусковой кнопки не допускать отрыва датчика от контролируемой поверхности, покачиваний из стороны в сторону, отклонения от нормали к контролируемой поверхности и сжатия пружины датчика. Это может привести к появлению дополнительной погрешности результата измерений.

2.3 Подготовка к работе и включение твердомера

2.3.1 Провести внешний осмотр твердомера, убедиться в отсутствии механических повреждений электронного блока, датчика (датчиков), соединительного кабеля.

2.3.2 Если необходимо, установить аккумулятор в аккумуляторный отсек электронного блока твердомера, соблюдая полярность контактов.

2.3.3 В случае использования датчика со встроенным разъемом под соединительный кабель подключить кабель к разъему на датчике.

2.3.4 Подключить соединительный кабель к соответствующему разъему на торцевой стенке электронного блока.

2.3.5 Кратковременно нажав кнопку "①" включить твердомер.

2.3.6 В общем случае, изображение на дисплее примет вид, соответственно представленному на рисунке 8.

Название шкалы или	ВИККЕРС	HV	Единицы измерений
дополнительной калиоровки			Поле результатов
Результат измерения			измерений в серии
Количество замеров в серии			Попе дополнительной
и усредненное значение			статистики
Размер выборки	макс = 0	X = 0	Инликатор зарала
Название блока данных	мин – О	8-0	индикатор заряда
	4 БЛОК	1	аккумулятра
			•

Рис. 8

Изображение на дисплее может отличаться от представленного на рисунке и определяется настройками твердомера совершенными ранее.

2.4 Проверка работоспособности твердомера

2.4.1 В соответствии с используемой основной или справочной шкалой измерения подготовить комплект образцовых мер твердости второго разряда по **ГОСТ 9031-75** и притирочную плиту в соответствии с требованиями п. **1.4.6** "Измерения на легких и тонкостенных изделиях".

Меры твердости должны иметь действующую метрологическую поверку.

Притереть меры твердости к плите, соблюдая процедуру установленную в п. **1.4.6 "Измерения на легких и тонкостенных изделиях"**.

2.4.2 Для проверки работоспособности твердомера по дополнительным калибровкам к шкалам твердомера или дополнительным шкалам, дополнительно подготовить соответствующие образцы твердости.

Образцы должны удовлетворять требованиям определенным в п. **1.4.5.2 "Требования к образцам для дополнительной настройки твердомера"**.

С образцами провести мероприятия с учетом требований п. 1.4.6 "Измерения на легких и тонкостенных изделиях".

2.4.3 Подготовить и включить твердомер, согласно п. 2.3 "Подготовка к работе и включение твердомера".

2.4.4 С помощью кнопок "^{ну}", "^{нв}", "^{нкс}", "⁽⁾", "⁽⁾", "⁽⁾" выбрать используемую шкалу измерений или дополнительную калибровку к шкале (кнопки "⁽⁾", "⁽⁾"). Управление твердомером при измерениях более подробно рассмотрено в п. **2.6** "Управление и представление результатов при измерениях".

2.4.5 На каждой мере твердости (образце), в соответствии с п. 2.2 "Схема замера твердости", произвести не менее пяти измерений и вычислить среднее значение.

Среднее значение рекомендуется вычислять, установив соответствующий размер выборки и используя соответствующие функции твердомера (см. п. п. 2.6 "Управление и представление результатов при измерениях", 2.7.1 "Установка параметров усреднения").

2.4.6 Оценить погрешность измерения - полученные результаты сравнить с паспортными значениями мер твердости (образцов). 2.4.7 Если разница полученных результатов измерений и паспортных значений мер твердости (образцов) не превышает допустимой погрешности, то можно перейти непосредственно к измерениям на изделиях.

2.4.8 Если разница полученных результатов измерений и паспортных значений мер твердости (образцов) выше допустимой погрешности, то необходимо провести калибровку шкалы по образцовым мерам твердости (дополнительную калибровку по образцам твердости, корректно ввести дополнительную шкалу). Процедуры изложены в п.п. **2.9.2** "Калибровка шкалы", **2.9.3** "Ввод дополнительной калибровки".

2.5 Порядок измерения твердости на изделиях

2.5.1 Провести оценку соответствия контролируемого изделия (изделий) рекомендациям и требованиям п. **1.4.4** "**Требования к контролируемому изделию**". В случае в случае необходимости обеспечить выполнение требований способами, указанными в данном пункте.

2.5.2 В случае необходимости подготовить дополнительные принадлежности по п. **1.4.3 "Дополнительные устройства и приспособления".**

2.5.3 Дополнительно учесть п. 1.4.8 "Влияние свойств поверхностных слоев изделия".

2.5.4 Проверить работоспособность твердомера по п. 2.4 "Проверка работоспособности твердомера".

2.5.5 В случае необходимости выбрать шкалу измерения, дополнительную калибровку по п. **2.6 "Управление и представление результатов при измерениях"**.

2.5.6 В случае необходимости совершить установку параметров усреднения (в общем случае, рекомендуемый размер выборки не менее 5) по п. 2.7.1 "Установка параметров усреднения" и дополнительной статистической обработки по п. 2.7.2 "Вывод дополнительной статистики".

2.5.7 В случае необходимости настроить сигнализацию выхода результата за установленный диапазон по п. **2.8** "Установка границ контроля".

2.5.8 В случае необходимости создать или выбрать блок в памяти для записи результатов измерений, по п. **2.12** "Работа с памятью".

2.5.9 В случае необходимости определить другие сервисные настройки твердомера.

2.5.10 Произвести измерения твердости на изделии (изделиях) в соответствии со схемой замера твердости, реализуемой твердомером по п. **2.2** "Схема замера твердости" и настройками параметров усреднения.

Результат измерения твердости и дополнительной статистической обработки наблюдать на дисплее по п. 2.6 "Управление и представление результатов при измерениях".

В случае необходимости сохранить результат измерения твердости в памяти прибора по п. **2.6 "Управление и представление результатов при измерениях**".

Повторить действия необходимое количество раз.

2.5.11 В случае необходимости, по п. **2.12 "Работа с памятью**", проанализировать записанные в память результаты измерений и/или вывести на компьютер.

2.5.12 Выключить прибор по п. 2.14 "Выключение твердомера".

2.6 Управление и представление результатов при измерениях

2.6.1 При включении (кратковременном нажатии кнопки "①") в зависимости установленных в предыдущих циклах работы параметров усреднения, вывода дополнительной статистики, используемой шкалы или дополнительной калибровки и т. д. дисплей прибора может принять вид рисунок 9.

рис. 9

Твердомер готов к проведению измерений по шкале или дополнительной калибровке используемой ранее сразу после включения. При этом используются все, совершенные ранее, установки.

Замеры производятся в соответствии с п. п. 2.2 "Схема замера твердости".

2.6.2 Выбор шкал осуществляется с помощью кнопок "[1], "[4],", при этом, в соответствующем месте дисплея отображается их название и единицы измерения.

2.6.3 Быстрый выбор основных шкал может осуществляться с помощью кнопок "ну, "нв, "нкс,

2.6.4 При переключении шкал твердомер производит автоматический перевод результатов в выбранную шкалу.

2.6.5 Выбор дополнительных калибровок к шкалам твердомера осуществляется с помощью кнопок ", ", ", при этом, в соответствующем месте дисплея отображается их название.

2.6.6 Как указывалось выше, твердомер позволяет производить:

- Автоматическую обработку серии (выборки) результатов непосредственно в ходе замеров – усреднять показания, в т. ч., используя алгоритмы отброса результатов некорректно совершенных замеров (см. п. 2.7.1 "Установка параметров усреднения").
- Проводить дополнительную статистическую обработку (только в модификации ТКМ-359С) - определять максимум, минимум, среднее значение (без "отброса"), среднеквадратичное отклонение от среднего значения.

Размер серии (размер выборки, количество замеров в серии) устанавливается через меню по п. **2.7.1** "Установка параметров усреднения", и отображается в поле "размер выборки".

Имеется возможность определять необходимый размер выборки непосредственно в ходе замеров. Для этого необходимо установить режим постоянного усреднения (максимальный размер выборки) по п. 2.7.1 "Установка параметров усреднения". При установке данного режима в поле "размер выборки" отобразиться максимальное число замеров при вычислении среднего для данной модификация. Для

завершения серии замеров будет необходимо кратковременно нажать кнопку "[]". Имеется возможность принудительно ("досрочно") завершать серию замеров

любого размера. Для этого нужно кратковременно нажать кнопку "

Также имеется возможность использовать размер выборки равный 1.

2.6.7 В поле "количество замеров в серии и усредненное значение" отображается количество сделанных замеров и их текущее усредненное значение (с использованием алгоритма отброса результатов некорректно совершенных замеров).

2.6.8 Большими цифрами на дисплее отображается результат текущего замера.

Если совершен последний замер в серии, или серия замеров завершена пользователем (кратковременно нажата кнопка "[]") то поле "количество замеров в се-

зователем (кратковременно нажата кнопка ""Э") то поле "количество замеров в серии и усредненное значение" исчезает с дисплея, а большими цифрами отображается усредненное значение всей серии замеров – **результат измерения**.

2.6.9 В поле "история результатов замеров в серии" отображаются результаты замеров (замеры в серии), по которым производится усреднение и их дополнительная статистическая обработка.

Если размер выборки равен 1, отображаются просто последние результаты.

Если количество замеров большое, то отображаются только последние несколько результатов. При включенном поле дополнительной статистической обработки (см. далее) выводится 7 последних результатов, в противном случае - 12. В модификации ТКМ-359М отображается только 5 последних результатов.

Если при усреднении используется алгоритм отброса результатов **некорректно совершенных** замеров, то "отброшенные" результаты выделяются на дисплее.

Поле автоматически очищается при начале новой серии замеров. Если размер

выборки равен 1, то поле очищается после кратковременного нажатия кнопки "

Поле "история результатов замеров в серии" может отображаться на дисплее или убираться с него, в зависимости от необходимости – п. **2.7.2** "Вывод дополнительной статистики".

2.6.10 В поле "дополнительная статистика" (доступно только в модификации твердомера ТКМ-359С) отображаются текущие результаты дополнительной статистической обработки;

- макс максимальный результат в серии,
- мин минимальный результат в серии,
- X среднее значение (вычисляется без использования выбранного алгоритма отброса результатов некорректно совершенных замеров),
 - δ среднеквадратичное отклонение от среднего значения.

Поле автоматически очищается при начале новой серии замеров. Если размер

выборки равен 1, то поле очищается после кратковременного нажатия кнопки "

Поле "дополнительная статистика", в зависимости от необходимости, может отображаться на дисплее или убираться с него - п. п. **2.7.2** "Вывод дополнительной статистики".

2.6.11 В поле "название блока данных" отображается название выбранного блока памяти для записи результатов измерений. Блок данных может быть создан или выбран из уже существующих через меню, см. п. **2.12 "Работа с памятью**".

Если блок памяти для записи не выбран, поле остается пустым.

2.6.12 Запись результата измерения в блок памяти прибора осуществляется длительным нажатием кнопки "^С". При записи результат измерения на дисплее "мигнет"

Если в момент нажатия на кнопку, серия замеров не завершена, твердомер предварительно завершит текущую серию замеров, как описано выше, вычислит усредненное значение всей серии замеров – **результат измерения**, и запишет в память. Если размер выборки равен 1, будет очищена вся статистика и записан последний результат.

Если при попытке записи блок для записи будет не выбран или максимально заполнен, прибор издаст характерный звуковой сигнал и выдаст диалоговые сообщения (см.п. **1.6.4** "Сообщения и диалоговые запросы") с предложением вариантов действий пользователя.

2.6.13 В модификации ТКМ-359С результаты выходящие за установленные границы (пороговые значения) выделяются цветом на дисплее - если границы контроля определены (п. **2.8** "Установка границ контроля").

2.6.14 В поле "индикатор заряда аккумулятора" условно отображается текущий заряд аккумулятора.

2.6.15 Переход в меню, для совершения настроек производится кратковременным нажатием кнопки "¹.

2.7 Установка параметров статистической обработки при измерениях

2.7.1 Установка параметров усреднения

Для установки размера серии замеров (размер выборки) и алгоритма отброса результатов **некорректно совершенных** замеров необходимо выбрать пункты меню <СТАТИСТИКА> - <ВЫБОРКА> (см. п. **1.6.2** "Меню твердомера").

На дисплее отобразится окно ввода параметров в соответствии с рисунком 10.

В поле "Размер выборки" устанавливается (см.п. **1.6.3 "Механизм ввода настроек**") размер серии замеров (размер выборки). Размер выборки который возможно установить –

1,2,3,4,5,6,7,8,9,10,15,...,непрерывно. Если выбрано "непрерывно", то размер выборки все равно не может превышать максимальное число замеров при вычислении среднего для используемой модификации твердомера.

В поле "Оброс" выбирается алгоритм отброса результатов некорректно совершенных замеров. Возможные варианты:

"HET" – при вычислении среднего отброс не производится

- "20ў при вычислении среднего отбрасываются результаты, отстоящие от среднего значения текущей серии замеров больше, чем на два среднеквадратичных отклонения
- "КРАЙНИЕ" отбрасываются максимальное и минимальное значения (если в текущей серии 5 и больше замеров)

2.7.2 Вывод дополнительной статистики

Для установки вывода на дисплей истории результатов замеров в серии и результатов дополнительной статистической обработки необходимо выбрать пункты меню <СТАТИСТИКА> - <ИНФОРМАЦИЯ>.

На дисплее отобразится окно ввода параметров в соответствии с рисунком 11.

В поле "История" выбирается, отображается в ходе измерений, или нет, история результатов замеров в серии.

В поле "Информация" (доступно только в модификации ТКМ-359С) выбирается, отображаются, или нет, результаты дополнительной статистической обработки.

Если устанавливается значение "ПОКАЗЫВАТЬ" –

РИС. 11 в процессе измерений отображается соответствующая информация. Если устанавливается значение "НЕТ", информация на дисплей не выводится.

2.8 Установка границ контроля

Данная функция доступна только в модификации ТКМ-359С.

Для определения границ контроля, о выходе за которые будет производиться сигнализация, необходимо выбрать пункт меню <ПОРОГИ>.

Могут использоваться варианты сигнализации:

- сигнализация выключена;
- сигнализация, когда результат выше порогового значения;
- сигнализация, когда результат ниже порогового значения;
- сигнализация, когда результат выходит за определенный диапазон;

В зависимости от выбранного варианта сигнализации, окно ввод может выглядеть как на рисунке 12.

Рис 12

В поле "Сигнализация:", выбирается тип сигнализации. В числовые поля вводятся пороговые значения (см.п. **1.6.3** "**Механизм ввода настроек**").

2.9 Калибровка шкал твердомера

2.9.1 Общие сведения

2.9.1.1 Процесс калибровки шкал твердомера (а также, дополнительной калибровки к шкалам) пользователем, заключается в приведении в соответствие <u>усред-</u><u>ненных</u> показаний твердомера на образцовых мерах твердости (образцах твердости) к паспортному (номинальному) значению твердости образцовых мер (образцов твердости).

Сущность процесса калибровки заключается во внесении поправок к изначальным заводским установкам.

2.9.1.2 Калибровка шкал твердомера позволяет восстановить точность показаний в случае появления дополнительной погрешности измерений, связанной с естественным износом механических частей твердомера.

Калибровка шкал твердомера должна производиться с использованием образцовых мер твердости не ниже 2-го разряда по **ГОСТ 9031-75**. Меры твердости должны иметь действующую метрологическую поверку.

Калибровка шкал твердомера не влияет на дополнительные калибровки к шкалам твердомера.

Калибровка основных шкал твердомера не влияет на справочные шкалы твердомера.

2.9.1.3 Введение дополнительных калибровок к шкалам твердомера позволяет производить контроль металлических изделий, отличающихся по свойствам от углеродистых конструкционных сталей (см. п. **1.4.5** "Работа с изделиями, отличными по свойствам от углеродистых конструкционных сталей").

Дополнительные калибровки шкалам твердомера могут вводиться Пользователем или на предприятии-изготовителе по предварительному заказу Пользователя.

Ввод дополнительных калибровок к шкалам твердомера должен производиться с использованием образцов твердости, изготовленным в соответствии с п. **1.4.5.2** "Требования к образцам для дополнительной настройки твердомера".

При поставке твердомера все дополнительные калибровки равнозначны калибровке соответствующей шкалы твердомера (если не определены заранее по заказу Пользователя).

2.9.1.4 Калибровка может производиться как по двум мерам твердости (образцам), так и по одной. Производить калибровку по одной мере (образцу) допустимо, когда данная процедура позволяет обеспечить допустимую погрешность во всем необходимом диапазоне измерений.

ВНИМАНИЕ !!!

- Калибровку основных и справочных шкал твердомера необходимо производить <u>ТОЛЬКО</u> в случае появления недопустимой погрешности в работе твердомера по этим шкалам. Наличие недопустимой погрешности определяется при измерениях на образцовых мерах твердости 2-го разряда по ГОСТ 9031-75, имеющих действующую метрологическую поверку, в соответствии с п. 2.4 "Проверка работоспособности твердомера".
- Перед проведением калибровки основной или справочной шкалы твердомера <u>рекомендуется</u> убедиться, что недопустимая погрешность не вызвана неудачной калибровкой шкалы, совершенной ранее. Для этого не-

обходимо вернуть твердомер к заводским настройкам по данной шкале по п. **2.9.4 "Удаление калибровки".** После чего проверить работоспособность по п. **2.4 "Проверка работоспособности твердомера"**.

2.9.2 Калибровка шкалы

2.9.2.1Для калибровки шкалы твердомера необходимо подготовить соответствующие образцовые меры твердости 2-го разряда по **ГОСТ 9031-75**, имеющие действующую метрологическую поверку.

Перед проведением калибровки меры твердости притираются к опорной плите в соответствии с процедурой установленной в п. **1.4.6** "Измерения на легких и тон-костенных изделиях".

2.9.2.2 Для входа в режим калибровки необходимо выбрать нужную шкалу твердомера (см. п. 2.6 "Управление и представление результатов при измерениях"), после чего выйти в меню и выбрать пункты меню <КАЛИБРОВКА> - <КАЛИБРОВ-КА>. Далее, для защиты от случайного изменения текущей настройки будет необходимо выполнить действия по п. 1.6.5 "Защита настроек от случайного изменения", после чего дисплей твердомера примет вид в соответствии с рисунком 13.

Рис. 13

2.9.2.3 Произвести несколько (не менее пяти) замеров, в соответствии с п. 2.2 "Схема замера твердости", на мере с меньшим значением твердости, смещая датчик по поверхности. При этом результаты замеров будут отображаться в "поле результатов", а в области дисплея "мера 1" усредненные показания (полученные с использованием установленного алгоритма отброса по п. 2.7.1 "Установка парамет-

ров усреднения").

2.9.2.4 С помощью кнопок "()", "()" изменить усредненные показания на паспортное (номинальное) значение меры твердости, после чего завершить калибровку по одной (первой) мере, нажав кнопку "()" (если нажать кнопку "()", не нажимая предварительно кнопок "()", "()" то показания будут "обнулены" замеры можно будет повторить заново), дисплей примет вид в соответствии с рисунком 14.

РИС. 14 2.9.2.5 Если производится калибровка по одной мере твердости нажать кнопку ⁽¹⁾. На дисплее появится сообщение (см. **1.6.4** "**Co**-

мере твердости нажать кнопку """. На дисплее появится сообщение (см. **1.6.4** "**Сообщения и диалоговые запросы**") подтверждающее, что проведена калибровка по одной мере и твердомер выйдет в меню.

ТКМ-359СМ РЭ

2.9.2.6 Если производится калибровка по двум мерам твердости, провести замеры, как описано выше, на второй мере. Установить ее паспортное значение и нажать кнопку "[]". На дисплее появится сообщение, подтверждающее, что проведе-

на калибровка по двум мерам и твердомер выйдет в меню. Можно отменить калибровку по второй мере в любой момент, нажав кнопку "⁽⁾" – твердомер выйдет в меню, предварительно выдав сообщение о проведении калибровки по одной мере. Это может быть необходимо, если при проведении замеров выяснится, что для устранения погрешности оказалось достаточно произвести

калибровку по одной мере твердости. 2.9.2.7 После проведения калибровки необходимо проверить работоспособность твердомера по п. **2.4 "Проверка работоспособности твердомера"**.

2.9.3 Ввод дополнительной калибровки

2.9.3.1Для ввода дополнительной калибровки шкалы твердомера необходимо подготовить образцы твердости в соответствии с требованиям определенным в п. **1.4.5.2** "Требования к образцам для дополнительной настройки твердомера".

Перед проведением калибровки с образцами необходимо провести мероприятия с учетом требований п. **1.4.6** "Измерения на легких и тонкостенных изделиях".

2.9.3.2 Для входа в режим ввода дополнительной калибровки, необходимо выбрать нужную шкалу твердомера и дополнительную калибровку, которую предстоит определить (см. п. 2.6 "Управление и представление результатов при измерениях"), после чего выйти в меню и выбрать пункты меню <КАЛИБРОВКА> -<КАЛИБРОВКА>

2.9.3.3 Далее процедура полностью аналогична процедуре калибровки шкалы твердомера изложенной в п. **2.9.2 "Калибровка шкалы"**.

2.9.4 Удаление калибровки

Функция удаления калибровки шкалы (или дополнительной калибровки) используется для возврата калибровки к первоначальным заводским установкам.

Для выбора функции необходимо выбрать (см. п. 2.6 "Управление и представление результатов при измерениях") нужную шкалу твердомера (или дополнительную калибровку), после чего выйти в меню и выбрать пункты меню «КАЛИБ-РОВКА» - «УДАЛЕНИЕ».

Далее, для защиты от случайного удаления будет необходимо выполнить действия по п. 1.6.5 "Защита настроек от случайного изменения".

После этого твердомер выдаст запрос (см. **1.6.4** "Сообщения и диалоговые запросы"), требующий подтвердить удаление калибровки.

В случае подтверждения калибровка будет удалена - твердомер выдаст подтверждающее сообщение и выйдет в меню.

При удалении дополнительной калибровки удаляется только сама калибровка, название калибровки (см. п. **2.9.5** "**Ввод названия дополнительной калибровки**") остается без изменений.

2.9.5 Ввод названия дополнительной калибровки

Для определения названия дополнительной калибровки необходимо (см. п. 2.6 "Управление и представление результатов при измерениях") дополнительную калибровку, после чего выйти в меню и выбрать пункты меню <КАЛИБРОВКА> - <ИМЯ >.

Рис. 15

На дисплее отобразится окно ввода параметров в соответствии с рисунком 15.

В поле "название" ввести новое название дополнительной калибровки (см.п. **1.6.3** "**Механизм ввода настроек**"), после чего нажать кнопку "—». На дисплее появится сообщение, подтверждающее, что название калибровки сохранено и твердомер выйдет в меню.

Введенное таким образом название будет отображаться в режиме измерений (2.6 "Управление и представление результатов при измерениях").

2.10 Ввод дополнительной шкалы

2.10.1 Общие сведения

Процесс создания дополнительной шкалы заключается в записи в твердомер зависимости (тарировочной кривой, характеристики) между первичным сигналом с датчика прибора и контролируемым параметром (например, твердостью). Наличие данной зависимости устанавливается с помощью образцов, изготовленных по п. **1.4.5.2** "Требования к образцам для дополнительной настройки твердомера".

Кривая задается табличным способом несколькими функциональными парами (точками) – сигнал с датчика и соответствующее ему значение контролируемого параметра. Количество точек (от двух до десяти) определяется настройками твердомера, исходя из формы кривой и количества имеющихся образцов (см. далее п. **2.10.2 "Ввод параметров дополнительной шкалы**").

При преобразовании сигнала датчика в значение контролируемого параметра по введенной кривой твердомер осуществляет промежуточную интерполяцию между точками кривой. Может использоваться кусочно-линейная (по двум точкам, ближайшим к значению сигнала) или кусочно-параболическая интерполяция (по трем точкам, ближайшим к значению сигнала).

Получение зависимости между сигналом датчика и контролируемым параметром осуществляется путем произведения замеров на имеющихся образцах в режиме снятия сигнала с датчика (см. далее п. **2.10.5** "Снятие сигнала датчика").

Результаты замеров представляются в виде таблицы (например таблицы 10).

Таблица 10

		i aoiniqa i
Номер образца	Сигнал датчика	Твердость образца
1	500	250 HV
2	570	200 HV

После того, как данные получены, они могут быть дополнительно обработаны на компьютере, в т. ч. с целью получения представления о характере зависимости, и полученная кривая записана в твердомер (см. далее п. **2.10.3 "Ввод кривой"**).

Использование кусочно-параболической интерполяции позволяет построить более "плавную" зависимость. Но при этом необходимо следить за тем, чтобы каждая возможная для вычислений тройка точек лежала на одной ветви проходящей через них параболы.

2.10.2 Ввод параметров дополнительной шкалы

Для установки количества точек кривой и вида интерполяции необходимо выбрать определяемую дополнительную шкалу, после чего выйти в меню и выбрать пункты меню <ВВОД ШКАЛЫ> - <НАСТРОЙКИ>. Далее, для защиты от случайного изменения будет необходимо выполнить действия по п. 1.6.5 **"Защита настроек от**

случайного изменения".

На дисплее отобразится окно ввода параметров в соответствии с рисунком 16.

В поле "Кривая" устанавливается установить количество точек в кривой.

В поле "Интерполяция" устанавливается вид используемой интерполяции (см. п. **1.6.3** "Механизм ввода настроек").

Рис. 16

2.10.3 Ввод кривой

Для ввода кривой (зависимости между сигналом датчика и контролируемым параметром) необходимо выбрать определяемую дополнительную шкалу, после чего выйти в меню и выбрать пункты меню <ВВОД ШКАЛЫ> - <ВВОД КРИВОЙ>. Далее, для защиты от случайного изменения будет необходимо выполнить действия по п. 1.6.5 "Защита настроек от случайного изменения".

Дисплей примет вид в соответствии с рисунком 17. Вид дисплея также будет зависеть от количества точек в кривой установленных в п. 2.10.2 "Ввод параметров дополнительной шкалы".

В области дисплея "сигнал" вводятся значения сигнала датчика, а в области "Прибор" соответствующие им значения контролируемого параметра.

Рис. 17

2.10.4 Ввод названия дополнительной шкалы

Для ввода названия и единиц измерения дополнительной шкалы необходимо выбрать определяемую дополнительную шкалу, после чего выйти в меню и выбрать пункты <ВВОД ШКАЛЫ> - <ОБОЗНАЧЕНИЯ>. В отобразившемся окне ввода параметров, руководствуясь п. **1.6.3** "**Механизм ввода настроек**", ввести название дополнительной шкалы и единиц измерения.

Введенные названия будет отображаться в режиме измерений.

2.10.5 Снятие сигнала датчика

Для снятия сигналя датчика на образцах необходимо выбрать определяемую дополнительную шкалу, после чего выйти в меню и выбрать пункты меню <ВВОД ШКАЛЫ> - <СИГНАЛ ДАТЧИКА>.

Дисплей примет вид в соответствии с рисунком 18.

Рис. 18

При проведении замеров на образцах на дисплее отображается результат замера (сигнал датчика в относительных единицах), результаты предыдущих замеров (в поле "история замеров"), количество замеров и усредненное значение.

Усреднение производится с использованием алгоритма отброса результатов некорректно совершенных замеров, установленного в п. **2.7.1** "Установка параметров усреднения".

Нажатие кнопки " приводит к "обнулению" предыдущих замеров и началу нового цикла усреднения.

Выход из режима в меню производится нажатием кнопки "

2.11 Настройки электронного блока твердомера

2.11.1 Настройка автовыключения и режима подсветки

Твердомер позволяет совершать установку времени автоматического выключения прибора при паузах в его эксплуатации и подсветки дисплея. Продуманная установка этих параметров позволяет обеспечить удобство Пользователю и сэкономить заряд аккумуляторов.

Для изменения этих настроек необходимо выбрать в меню пункты <НАСТРОЙ-КИ> - <ПРИБОР>. В отобразившемся окне ввода параметров, руководствуясь п. **1.6.3 "Механизм ввода настроек"**, совершить необходимые установки.

2.11.2 Установка яркости и цвета дисплея

Данная функция доступна только в модификации ТКМ-359С.

Твердомер позволяет совершать установку яркости и цветовой палитры дисплея. Продуманная установка этих параметров позволяет обеспечить удобство Пользователю и сэкономить заряд аккумуляторов.

Для изменения этих настроек необходимо выбрать в меню пункты <НАСТРОЙ-КИ> - <ЭКРАН>. В отобразившемся окне ввода параметров, руководствуясь п. **1.6.3** "**Механизм ввода настроек**", совершить необходимые установки.

2.11.3 Выбор языка

Твердомер позволяет выбрать язык интерфейса, из заложенных при изготовлении (по заказу пользователя).

Для установки языка необходимо выбрать в меню пункты <НАСТРОЙКИ> - <ВЫБОР ЯЗЫКА>. В отобразившемся окне ввода параметров, руководствуясь п. **1.6.3 "Механизм ввода настроек"**, совершить необходимые установки.

2.12 Работа с памятью

2.12.1 Общие сведения

Твердомер позволяет организовывать гибкий архив данных результатов измерений в памяти твердомера и передавать данные в компьютер.

Модификация ТКМ-359С дополнительно позволяет проводить анализ результатов измерений накопленных в архиве, в т. ч. с построением графиков на дисплее прибора.

Архив организуется в виде именных блоков памяти. В блоки памяти записываются результаты измерений (п. **2.6** "Управление и представление результатов при измерениях"). Блоки памяти определяются Пользователем (например блок результатов измерений твердости на определенной детали). Блок памяти может содержать результаты измерений в одинаковых единицах измерения (по одной шкале).

Операции, производимые с архивом данных:

- создание блоков памяти;
- удаление блоков памяти;
- очистка данных блоков памяти;
- установка блоков для записи результатов измерений
- установка названия блоков памяти;
- вывод данных на дисплей;
- вывод данных, удовлетворяющих условию, на дисплей (только модификация ТКМ-359С);
- анализ данных с помощью различных видов статистической обработки (только модификация TKM-359C);
- анализ данных с помощью графиков на дисплее (только модификация TKM-359C);
- очистка архива данных;
- просмотр состояния памяти прибора (только модификация TKM-359C);
- передача данных в компьютер

Доступ к операциям с архивом данных производится через пункт <ПАМЯТЬ> в меню твердомера. Структура соответствующего подменю показана в таблице 11.

Таблица 11

Блоки данных	Результаты	Вывод данных	2.12.9 "Просмотр
		блока памяти на	данных"
		дисплей	
	Анализ	Статистическая	2.12.10 "Анализ
	(только ТКМ-	обработка блока	данных"
	359C)	памяти	
	График	Построение гра-	2.12.11 "Вывод
	(только ТКМ-	фиков по данным	графиков"
	359C)	блока памяти	
	Выбрать	Выбор данного	2.12.3 "Установка
		блока памяти для	блока для записи
		записи результа-	результатов изме-
		тов измерений	рений"

	Название	Изменение назва-	2.12.8 "Изменение
		ния блока	названия блока"
	Очистить	Удаление всех	2.12.4 "Очистка
		данных из блока	блока"
	Передача в	Передача в ком-	2.12.12 Передача
	ЭВМ	пьютер данных из	данных в компью-
	(только ТКМ- 359М)	блока памяти	тер
	Удалить	Удаление блока	2.12.5 "Удаление
		данных из памяти	блока"
Выбрать блок	Выбор блока	данных для записи	2.12.3 "Установка
	результатов из	вмерений	блока для записи
			результатов изме-
			рений"
Создать блок	Создание блока данных в памяти		2.12.2 "Создание
			блока"
Очистить блок	Удаление всех данных из блока		2.12.4 "Очистка
			блока"
Удалить блок	Удаление блок	а данных из памяти	2.12.5 "Удаление
			блока"
Очистить память	Удаление всех	2.12.6 "Очистка па-	
	памяти		мяти"
Состояние	Получение инс	формации о состоя-	2.12.7 "Информа-
(только ТКМ-359С)	нии памяти	•••	ция о состоянии
,			памяти"

2.12.2 Создание блока

Для создания нового блока данных необходимо выбрать пункты меню <ПА-МЯТЬ> - <СОЗДАТЬ БЛОК>.

В отобразившемся окне ввода параметров, руководствуясь п. **1.6.3** "**Механизм ввода настроек**", ввести название создаваемого блока и единицы результатов измерений, записываемых в блок (соответствуют шкале).

В случае невозможности создания блока (память твердомера предельно заполнена или уже создано максимальное количество блоков) твердомер выдаст соответствующее сообщение.

Для использование созданного блока для записи результатов измерений далее необходимо выполнить действия по п. 2.12.3 "Установка блока для записи результатов измерений".

2.12.3 Установка блока для записи результатов измерений

Для выбора блока данных для записи результатов измерений необходимо выбрать пункты меню <ПА-МЯТЬ> - <ВЫБРАТЬ БЛОК>.

На дисплее отобразиться список блоков данных (рисунок 19), которые могут быть выбраны для записи результатов измерений по текущей шкале (могут содержать данные в текущих единицах измерения). С помощью кнопок "பு", "பு", "," выбрать блок данных для записи результатов измерений по текущей шкале.

В случае если ранее не определено ни одного блока для записи результатов в единицах текущей шкалы твердомер выдаст диалоговый запрос (см. **1.6.4** "**Сообщения и диалоговые запросы**") с предложением создать такой блок.

Другой способ (только модификация ТКМ-359С) установить блок для записи – выбрать пункты меню <ПАМЯТЬ> - <БЛОКИ ДАННЫХ>. Затем из списка всех имеющихся блоков выбрать нужный. После чего в открывшемся подменю (см. таблица 11) выбрать пункт <ВЫБРАТЬ>. Выбранный блок будет установлен для записи результатов по соответствующей ему шкале.

2.12.4 Очистка блока

Для удаления всех данных из блока необходимо выбрать пункты меню <ПА-МЯТЬ> - <ОЧИСТИТЬ БЛОК>. Из появившегося списка всех имеющихся блоков с помощью кнопок "()","()", ")", выбрать нужный, после чего подтвердить действие. Блок будет очищен.

Другой способ – выбрать пункты меню <ПАМЯТЬ> - <БЛОКИ ДАННЫХ>. Затем из списка блоков выбрать нужный. После чего в открывшемся подменю выбрать пункт <ОЧИСТИТЬ>.

2.12.5 Удаление блока

Для удаления блока данных из памяти необходимо выбрать пункты меню <ПА-МЯТЬ> - <УДАЛИТЬ БЛОК>. Из появившегося списка имеющихся блоков выбрать нужный, после чего подтвердить действие. Блок будет удален.

Другой способ – выбрать пункты меню <ПАМЯТЬ> - <БЛОКИ ДАННЫХ>. Затем из списка блоков выбрать нужный. После чего в открывшемся подменю выбрать пункт <УДАЛИТЬ>.

2.12.6 Очистка памяти

Для удаления всех блоков данных из памяти необходимо выбрать пункты меню <ПАМЯТЬ> - <ОЧИСТИТЬ ПАМЯТЬ>, после чего подтвердить действие. Память будет очищена.

2.12.7 Информация о состоянии памяти

Данная функция доступна только в модификации ТКМ-359С. Для получения информации о текущем состоянии памяти, необходимо выбрать

Память	
Блоки	5
Возможно:	95
Результат	г
Занято:	1 644
Резерв. Возможно:	12255

пункты меню <ПАМЯТЬ> - <СОСТОЯНИЕ>.

Дисплей примет вид в соответствии с рисунком 20. В поле "блоки данных": Создано – общее количество созданных блоков данных. Возможно – максимальное количество блоков данных, которое еще можно создать на текущий момент.

В поле "Результаты" – общее количество записанных результатов измерений. Резерв – количество ячеек памяти, зарезервированных для записи результатов

39

измерений в имеющихся блоках данных. Возможно – количество свободных ячеек памяти, не закрепленных за блоками данных.

Выход из режима в меню производится нажатием кнопки "В" или ".

2.12.8 Изменение названия блока

Для изменения названия блока данных необходимо выбрать пункты меню <ПА-МЯТЬ> - <БЛОКИ ДАННЫХ>. Затем из списка блоков выбрать нужный. После чего в открывшемся подменю выбрать пункт <НАЗВАНИЕ>. В отобразившемся окне ввода параметров, руководствуясь п. **1.6.3** "**Механизм ввода настроек**", ввести новое название.

2.12.9 Просмотр данных

Для просмотра результатов измерений записанных в блоке необходимо выбрать пункты меню <ПАМЯТЬ> - <БЛОКИ ДАННЫХ>. Затем из списка блоков выбрать нужный. Затем выбрать пункт меню <РЕЗУЛЬТАТЫ>.

В модификации ТКМ-359М на дисплей будет выведен список всех результатов измерений записанных, в выбранном блоке памяти. Для прокрутки списка необходимо использовать кнопки "①", "①". Выход из режима в меню производится нажатием кнопки "ⓐ" или "④"

В модификация ТКМ-359С, в отобразившемся окне ввода параметров (см. рисунок 21), руководствуясь п. **1.6.3** "**Механизм ввода настроек**", выбрать условие отбора записанных в блоке результатов для вывода на дисплей и установить граничные значения для усло-

вия.

Рис. 21

Могут использоваться варианты отбора:

- вывод всех результатов;
- вывод результатов больше определенного значения;
- вывод результатов меньше определенного значения;
- вывод результатов, выходящих за определенный диапазон;

После установки необходимых значений на дисплей будет выведен список всех результатов измерений удовлетворяющих выбранному условию, или твердомер выдаст сообщение, что таковых не найдено.

2.12.10 Анализ данных

Данная функция доступна только в модификации ТКМ-359С.

Твердомер позволяет производить различные виды анализа результатов измерений, записанных в блоке:

ТКМ-359СМ РЭ

- вычисление среднего значения, среднеквадратичного отклонения от среднего, поиск минимального и максимального значений (вид -"СРЕДНЕЕ");
- вычисление среднего отклонения от заданного (например, ожидаемой твердости) в сторону увеличения и уменьшения, поиск максимального отклонения в сторону увеличения и уменьшения (вид -" ЗНАЧЕНИЕ ");
- относительно диапазона (вид "ДИАПАЗОН")

Для выхода в режим обработки результатов измерений необходимо выбрать пункты меню «ПАМЯТЬ» - «БЛОКИ ДАННЫХ». Затем из списка блоков выбрать нужный. После чего в открывшемся подменю выбрать пункт «АНАЛИЗ».

В отобразившемся окне ввода параметров установить вид анализа ("СРЕДНЕЕ", "ЗНАЧЕНИЕ", "ДИАПАЗОН" – для необходимого вида анализа соответственно) и необходимые отправные значения (вид окна, практически аналогично п. **2.12.9** "Просмотр данных").

На дисплее будет отображены результаты соответствующих вычислений.

2.12.11 Вывод графиков

Данная функция доступна только в модификации ТКМ-359С.

Твердомер позволяет производить анализ сохраненных в блоке результатов измерений с помощью графиков, построенных на дисплее. Для удобства анализа графики могут быть построены:

- относительно среднего значения данных в блоке;
- относительно заданного значения (например, ожидаемой твердости);
- относительно диапазона значений (например, допустимого диапазона твердости)

Для выхода в режим построения графиков необходимо выбрать пункты меню <ПАМЯТЬ> - <БЛОКИ ДАННЫХ>. Затем из списка блоков выбрать нужный. После чего в открывшемся подменю выбрать пункт <ГРАФИК>.

В отобразившемся окне ввода параметров установить тип графика ("СРЕДНЕЕ", "ЗНАЧЕНИЕ" или "ДИАПАЗОН") и необходимые отправные значения.

На дисплее будет построен график по данным блока. Горизонтальными линиями будут отображены отправные значения.

2.12.12 Передача данных в компьютер

Для передачи данных в компьютер необходимо с помощью кабеля, входящего в комплект, соединить твердомер с компьютером. На компьютере необходимо установить и запустить программу, поставляемую вместе с твердомером.

В модификации ТКМ-359М:

- выключить твердомер, если он был включен;
- подсоединить к разъему на торцевой стенке электронного блока кабель для передачи данных, входящий в комплект поставки. Другой конец кабеля подключить к одному из СОМ-портов компьютера;
- запустить на компьютере программу, входящую в комплект поставки, и установить ее в режим приема информации;
- Включить электронный блок и выбрать пункты меню «ПАМЯТЬ» «БЛО-КИ ДАННЫХ». Затем из списка блоков выбрать нужный. После чего в от-

крывшемся подменю выбрать пункт <ПЕРЕДАЧА В ЭВМ>, после чего нажать кнопку "-". Информация будет передана в компьютер.

В модификации ТКМ-359С:

- выключить твердомер, если он был включен;
- подсоединить к разъему на торцевой стенке электронного блока кабель для передачи данных, входящий в комплект поставки. Другой конец кабеля подключить к одному из USB-портов компьютера;
- запустить установленную на компьютере программу, входящую в комплект поставки.
- Включить электронный блок. На дисплее появится сообщение от том, что он подключен к компьютеру. Информация будет передана в компьютер

2.13 Контроль состояния и зарядка аккумуляторов

В твердомере предусмотрен оперативный контроль состояния аккумулятора. Текущий заряд аккумулятора индицируется на дисплее в режиме измерений (см. п. 2.6 "Управление и представление результатов при измерениях").

При достижении величины критического разряда на дисплее появится схематичное мигающее изображение аккумулятора и твердомер выключается.

Для зарядки аккумулятора в модификации ТКМ-359М необходимо, открыв крышку батарейного отсека (см. п. **1.6.1** "Составные части и органы управления"), извлечь аккумулятор и зарядить его при помощи входящего в комплект поставки зарядного устройства.

Для зарядки аккумулятора в модификации ТКМ-359С необходимо подключить зарядное устройство к разъему на торцевой стенке электронного блока (см. п. **1.6.1** "Составные части и органы управления") и с помощью него зарядить аккумулятор. При зарядке на дисплее будет отображаться схематичное изображение аккумулятора.

ВНИМАНИЕ !!!

В процессе зарядки <u>не оставлять</u> включенное в сеть зарядное устройство без присмотра.

2.14 Выключение твердомера

Твердомер можно выключить тремя способами:

- Нажать и удерживать 0,5- 1 сек. кнопку "①", затем отпустить.
- Выбрать в меню пункт <ВЫКЛЮЧЕНИЕ>.
- Не производить с твердомером никаких действий (не проводить замеров, не нажимать на кнопки). Твердомер выключится спустя промежуток времени, установленный по п. 2.11.1 "Настройка автовыключения и режима ожидания".

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Проверка технического состояния твердомера с целью обеспечения его работоспособности в течение всего периода эксплуатации проводится не реже одного раза в год в следующей последовательности:

ТКМ-359СМ РЭ

- проверить комплектность твердомера по п. **1.5** "Комплектность твердомера";
- провести внешний осмотр твердомера, убедиться в отсутствии механических повреждений электронного блока, датчика, соединительного кабеля;
- проверить работоспособность твердомера по п. **2.4** "Проверка работоспособности твердомера";
- при невозможности устранения выявленных недостатков следует обратиться на предприятие-изготовитель;

4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1 Твердомер в транспортной упаковке, обеспечивающей его сохранность, транспортируют железнодорожным, автомобильным, морским или авиационным транспортом с соблюдением соответствующих правил перевозки грузов, действующих на указанных видах транспорта. В случае транспортировки авиационным транспортом транспортировка должна осуществляться в герметизированных отапливаемых отсеках.

4.2 Хранение твердомера производится в футляре в закрытом отапливаемом помещении с температурой воздуха (25±10) °С, относительной влажностью от 45 до 80 % и атмосферным давлением от 630 до 800 мм рт.ст. В помещении должна отсутствовать плесень, пары кислот, реактивов, красок и других химикатов. В помещении не должны допускаться резкие изменения температуры и влажности воздуха, вызывающие появление росы.

4.3 При длительном (более 2 месяцев) хранении аккумуляторы должны извлекаться из электронного блока.

5 МЕРЫ ПРЕДОСТОРОЖНОСТИ

6.1 Твердомер является технически сложным измерительным устройством, требующим бережного обращения. Его необходимо оберегать от:

- ударов, нагрузок которые могут привести к механическим повреждениям твердомера;

- воздействия химически агрессивных сред;
- попадания жидкостей;
- длительного воздействия прямых солнечных лучей;

- других воздействий, которые могут нанести вред работоспособности прибора

6.2 При измерениях не допускается отклонение от схемы замера твердости установленной в п. **2.2** "Схема замера твердости", т. к. это может привести к выходу из строя датчика твердомера.

6.3 Не допускается использование твердомера в условиях резкого перепада температур. При резком перепаде температуры окружающего воздуха перед включением твердомер выдержать в выключенном состоянии не менее 1 часа.

6.5 Не допускается использование в твердомере элементов питания и зарядных устройств, не одобренных производителем.

6.4 Не допускается вскрытие электронного блока и датчиков, самостоятельный ремонт твердомера.

6 УТИЛИЗАЦИЯ

После окончания срока эксплуатации твердомер не представляет опасности для жизни и здоровья людей, для окружающей среды и не требует особых способов утилизации.

Элементы питания твердомера утилизируются в соответствии с действующими правилами утилизации данных изделий.

7 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

7.1 Предприятие-изготовитель гарантирует соответствие твердомера требованиям технических условий ТУ 4271-002-96819331-2011 "Твердомеры портативные динамические ТКМ-359 (модификации ТКМ-359С, ТКМ-359М)" в течении гарантийного срока эксплуатации.

Гарантийный срок эксплуатации твердомера составляет 24 месяца с момента продажи (но не более 30 месяцев с даты выпуска) при условии соблюдения требований настоящего руководства, совмещенного с паспортом, к эксплуатации, техническому обслуживанию, транспортировки и хранения.

7.2 Гарантийный и послегарантийный ремонт осуществляется на предприятииизготовителе.

7.3 В случае обнаружения неисправностей в твердомере в период гарантийного срока потребителем должен быть составлен акт о необходимости устранения неисправности твердомера. Твердомер и один экземпляр акта направляется изготовителю или представителю изготовителя (поставщику).

7.4 Гарантийному ремонту не подлежат твердомеры, имеющие повреждения, связанные с нарушением требований к эксплуатации, мерам предосторожности при эксплуатации, технического обслуживания, транспортировки и хранения, механические повреждения (за исключением следов вызванных нормальной эксплуатацией), следы попадания жидкостей и др. воздействий, приводящих к выходу твердомера из строя.

7.5 Гарантийному ремонту не подлежат твердомеры с нарушенными защитными пломбами (этикетками) на корпусах электронного блока и датчиков, а так же твердомеры, имеющие следы вскрытия и/или попыток самостоятельного ремонта.

7.6 Гарантия изготовителя не распространяется на аккумуляторы и устройства других производителей (зарядные устройства, шлифовальные машинки), поставляемые в комплекте твердомера

7.7. Гарантия не распространяется на естественный износ частей твердомера (кабелей, датчиков и пр.), обусловленных интенсивной эксплуатацией.

7.8 Гарантийный ремонт осуществляется при предъявлении настоящего руководства, совмещенного с паспортом твердомера. ТКМ-359СМ РЭ

СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Твердомер ТКМ-359____ заводской номер _____ соответствует ТУ 4271-002-96819331-2011 и признан годным для эксплуатации.

Дата выпуска:		Ответственный за приемку:
<>	201 г.	/ М.П.
Дата поверки:	201 -	Поверитель:
<>	2011.	/ М.П.
Дата продажи*:		Поставщик:
<>	201 г.	/ М.П.

* Поле дата продажи заполняется поставщиком твердомера. В случае если поле не заполнено, датой продажи считается дата выпуска твердомера

9 СВЕДЕНИЯ О РЕМОНТЕ ТВЕРДОМЕРА

дата	перечень работ	подпись

МЕТОДИКА ПОВЕРКИ (ТКМ359СМ МП)

Настоящая методика поверки распространяется на твердомеры портативные динамические ТКМ-359, предназначенные для измерения твёрдости металлов по шкалам Бринелля, шкале «С» Роквелла и шкалам Виккерса (далее – твердомер), и устанавливает методы и средства первичной и периодической поверки.

Межповерочный интервал - один год.

Твердомер представляет собой портативный электронный прибор динамического действия. Твердомер состоит из электронного блока и датчика. Электронный блок позволяет переключать твердомер на измерения твёрдости сталей, менять режимы измерения. Электронный блок автоматически опознаёт датчик, подключенный к нему, и загружает необходимые программы. Основными частями датчика являются боёк и электромагнитная катушка. При прохождении бойка через катушку вырабатывается электрический сигнал, отношение сигналов при падении бойка на поверхность материала и отскоке переводится программно в числа твёрдости.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки выполняются операции, указанные в таблице 1.

Таблица №1.

		Обязатель- ность прове- дения опера- ций	
Наиме- нование опера- ций	Описание операции		При пе- рио- ди- чес- кой по- вер- ке
Внеш- ний ос- мотр	Внешним осмотром проверить комплектность, выявить наличие механических повреждений. Пункт 1.5 РЭ. В случае обнаружения несоответствий данным требова- ниям поверка должна быть прекращена.	Да	Да
Опро- бование	Притереть эталонные меры твердости к плите (ГОСТ 10905-86 Плиты поверочные и разметочные. Технические усло- вия). Для этого на ее опорную поверхность нанести тонкий слой смазки ЦИАТИМ-221 по ГОСТ 9433-80 либо УТ (Кон- сталин) по ГОСТ 1957-73, либо любой другой смазки анало- гичной консистенции. Меры притереть к поверхности плиты, таким образом, чтобы не было непосредственного контакта металлических поверхностей, то есть, чтобы меры "прилипли". Проверить работоспособность твердомера в соответствии с п.2.4 РЭ	Да	Да

ТКМ-359СМ РЭ

Опре- деление абсо- лютной по- грешно- сти прибора по твёрдо- сти и размаха показа- ний	На каждой из эталонных мер твердости см. п. 2.1, провести по 5 измерений. Результаты измерений усреднить. Полученное среднее значение Нср занести в протокол испытаний. Вычислить абсолютную погрешность измерений твердости для каждой меры по формуле: $\mathcal{S} = H_{cp} - H_n$ где: Нср - среднее значение твердости, полученное измерениями на эталонной мере; Нн - нормативное (по паспорту) значение твердости эталонной меры. Абсолютная погрешность измерений твердости твердомером при его поверке на каждой эталонной мере не должна превышать пределов, указанных в п.1.4.1 РЭ. Если абсолютная погрешность измерений твердости твердомером на всех эталонных мерах твердости неревышает значений, указанных выше, то твердомер считается пригодным для эксплуатации.	Да	Да
--	---	----	----

1.2 Меры твёрдости, используемые для поверки портативных твердомеров, должны быть поверены.

1.3. Допускается применять другие средства поверки с аналогичными нормативно-техническими характеристиками.

2 СРЕДСТВА ПОВЕРКИ

2.1. При поверке должны применяться эталонные меры твердости не ниже 2 –го разряда типа МТР, МТБ, МТВ по ГОСТ 9031-78 диапазоны значений твердости которых указаны ниже в таблице №2: Таблица №2

Таблица 14					
Наименование этал	Номинальные значения чисел				
мер твердост	и	твёрдости эталонных мер			
	25 ± 5				
МТР, по Роквеллу, HRC	45 ± 5				
	65 ± 5				
	HB 10/1000/10	100 ± 25			
МТБ, по Бринеллю	HB 10/3000/10	200 ± 50 400 ± 50			
МТВ, по Виккерсу, HV30	200 ± 50 450 ± 75 800 ± 50				

Погрешности прибора при измерениях на мерах твёрдости указаны в Таблице №3.

Таблица №3

Диапазоны измер	ений твердости по шкалам:	Пределы допускаемой абсолютной по-		
		грешности измерения твердости		
Роквелла, HRC	(20-70)	± 2		
Бринелля, НВ				
•	(75150)	±10		

ТКМ-359СМ РЭ

	(150300) (300650)	±15 ±20
Виккерса, HV		
	(200500)	±15
	(500800)	±20
	(8001000)	±25

2.2. При поверке должна использоваться чугунная или стальная плита по ГОСТ 10905-86. Параметр шероховатости поверхностей плиты Ra < 0,16 по ГОСТ 2789-73.

З ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1 При проведении поверки должны быть соблюдены "Правила эксплуатации электроустановок потребителем" (утверждены Госэнергонадзором 27.02 83), "Правила техники безопасности при эксплуатации электроустановок потребителем" (утверждены Госэнергонадзором 31.03 92).

3.2 При проведении поверки должны быть соблюдены требования безопасности согласно ГОСТ 12.3.019 и санитарных норм CH 245-71.

4 УСЛОВИЯ ПОВЕРКИ

Поверка проводится в соответствии с ГОСТ 8.395 "ГСИ. Нормальные условия измерений при поверке. Общие требования"

5 ПОДГОТОВКА К ПОВЕРКЕ

5.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:

-привести в рабочее состояние средства поверки в соответствии с указаниями, изложенными в их эксплуатационной документации;

5.2 Подготовить к работе поверяемый прибор в соответствии с инструкцией по эксплуатации.

Плита с образцовыми мерами твердости должна быть горизонтально установлена на столе.

5.3 Рабочие поверхности эталонных мер твердости и индентор твердомера должны быть чистыми и обезжиренными по ТУ ОП 64-11-120-88.

5.4 Выполнить операцию «Опробование», описанную в таблице №1.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Контроль метрологических характеристик прибора.

Абсолютную погрешность измерений твердости твердомером на эталонных мерах твердости необходимо определять только при вертикальном положении твердомера, (сверху вниз) по отношению к эталонной мере твёрдости.

На каждой из эталонных мер твердости провести по 5 измерений см. п.п. 2.2, 2.5 РЭ. Результаты измерений усреднить. Полученное среднее значение Нср, относящееся к данной шкале твёрдости, занести в протокол испытаний.

Вычислить абсолютную погрешность измерений твердости для каждой меры и шкалы по формуле:

$$\delta = H_{cp} - H_{H}$$

где: Hcp - среднее значение твердости, полученное измерениями на эталонной мере;

Нн - нормативное (по паспорту) значение твердости эталонной ме-

ры.

Абсолютная погрешность измерений твердости твердомером при его поверке на каждой эталонной мере по каждой шкале не должна превышать пределов, указанных в Таблице 3.

Если абсолютная погрешность измерений твердости твердомером по всем шкалам твердости не превышает значений, указанных в Таблице 3, то твердомер считается пригодным для эксплуатации.

Если же абсолютная погрешность превышает указанные в Таблице 3 значения, твердомер признается непригодным для эксплуатации.

6.2. Подтверждение соответствия ПО.

6.2.1 Включить твердомер в соответствии с п.2.3 РЭ. На экране должны высветиться идентификационные данные ПО. Высветившиеся данные должны совпадать с данными, указанными в таблице 4.

6.2.2 Убедиться, что доступ пользователя для изменения калибровочных настроек твердомера защищён паролем.

Наименование ПО	Идентификационное на- именование ПО	Номер версии (иденти- фикационный номер) ПО
ПО для портативного твердомера ТКМ-359С	TKM659	1.01.359C
ПО для портативного твердомера ТКМ-359М	TKM659	1.01.359M

Идентификационные данные ПО указаны в Таблице 4:

Таблица 4. Идентификационные данные ПО.

Если идентификационные данные из таблицы 4 совпадают с данными, высветившимися на экране, то твердомер признаётся годным к эксплуатации. Если номер версии ПО не совпадает с указанным в таблице 4, то поверитель должен получить от производителя официальное письмо с указанием даты выхода и номеров новых версий ПО для этого прибора. Если полученные данные совпадают с высветившимися на экране, то твердомер признаётся годным к эксплуатации, в противном случае он признаётся непригодным к эксплуатации.

Приложение А

(обязательное)

ФОРМА ПРОТОКОЛА ОПРЕДЕЛЕНИЯ АБСОЛЮТНОЙ ПОГРЕШНОСТИ ТВЕРДОМЕРОВ ПОР-ТАТИВНЫХ ДИНАМИЧЕСКИХ ТКМ-359

Протокол №_____

определения погрешности твердомера

Модель твердомера портативного динамического ТКМ-359_____

Заводской №

Средства поверки:

мера твёрдости Роквелла №	значение,	HRC
мера твёрдости Роквелла №	значение,	HRC
мера твёрдости Роквелла №	значение,	HRC
мера твёрдости Виккерса №	значение _	HV 30
мера твёрдости Виккерса №	значение _	HV 30
мера твёрдости Виккерса №	значение _	HV 30
мера твёрдости Бринелля №	значение	HB 10/1000/10
мера твёрдости Бринелля №	значение _	HB 10/3000/10
мера твёрдости Бринелля №	значение	HB 10/3000/10

Таблица 1. Результаты измерений.

Nº	Шкала	№ меры	Результаты измерения твёрдости твердомера ТКМ-359			Среднее 5 из- мерений		
п.п.			1	2	3	4	5	
1	HRC							
2	HRC							
3	HRC							
4	HV 30							
5	HV 30							
6	HV 30							
7	HB 10/1000/10							
8	HB 10/3000/10							
9	HB 10/3000/10							

Таблица 2. Определение абсолютной погрешности.

		Значение меры твёр-	Среднее 5 измере-	Абсолютная по-
Nº	Шкала	дости	ний	грешность прибора
п.п.		по свидетельству		
1	HRC			
2	HRC			
3	HRC			
4	HV 30			
5	HV 30			
6	HV 30			
7	HB 10/1000/10			
8	HB 10/3000/10			
9	HB 10/3000/10			

Заключение:

Прибор является годным (не годным) к применению. Прибор является годным (не годным) к применению. Выдано свидетельство о поверке № ______ от _____ от _____

Срок действия свидетельства до _____

Поверитель

ТКМ-359СМ РЭ

СВИДЕТЕЛЬСТВО ОБ УТВЕРЖДЕНИИ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.28.002.A Nº 45288

Срок действия до 24 января 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Твердомеры портативные динамические ТКМ-359

ИЗГОТОВИТЕЛЬ ООО "НПП "Машпроект", г. Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 48898-12

ДОКУМЕНТ НА ПОВЕРКУ ТКМ359СМ МП

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 24 января 2012 г. № 47

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства Е.Р.Петросян 2017 С. 2012 г.

Серия СИ

№ 003291

ООО "Научно-производственное предприятие "Машпроект"

Тел: (812) 337-55-47, (812) 939-34-58 Адрес: РФ, 191144, Санкт-Петербург, ул. Новгородская, д. 13 Почт адрес: РФ, 191144, Санкт-Петербург, а/я 322 <u>http://www.control.sp.ru</u>